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WA B VR
| BESkERFRPEEEN
L1 JREHKIR
12 REMARERREX

—ANMEE, TREREEHIE LRk, #am My, a2 k.
HTRTEEN, 2 XIS AESMES T, I HRCZ 20555 R 0 3
FAL, AT PR, VLA S EE AR (reference) FIPAJE X (sense) #4)
8, HEFNZIAETR Y, RERZON B BRI S fe e i . R
i 5 MRS TR R Y, B AR 2 (Flangs ., #ug),
o 2 LA R R IE 2R . BRI ALAG. X AR T IR 22 SRR AN T

LR EH S FEARNL L I, RIS TEA ) b & A o4 . RIS LA
W — MR A — DAL, XEER e L. 25 51841 05 5 6 & B
M. 5IHRETFRE, HFE—ERNC A B4 TARINR S SN . YRR )
— BB AT DA R S0, BUMAZIRNCAY R A" X, HAE B —AS TN
TSR AN, BIAN <27 B BRI SCRI L5 S o3 Ah—Seifit B R ScH B oAby 5
WA E TR BRI PR RS, R A TEAL B — B AR R, AR B 51 % 51
ok, Bl <l FERTRER T, MAEVE T RFERE.

TAE 22 SCMEAE R L BTZE ) R SCHE AR AT DS BT AR, BNAS R — IR = S R
B F PR 4155 22 AR SH . (Word Sense Disambiguation ), F-ix i i Bl g7 >
sk, gk —ANRT A E ShiE B AR . & LA ] SO AR R — AT 45 1 L&
4324145 (Multinominal classification) , B[ A FTA 536 A4 1] 3100 b 4% H — A fe A ) 37
S Ay FATSS BRI FAREE 2 [ R A E ST 1 SCIEAZ R, XS B RIS 4
AR [ et T SRR ) AT s ) SCRSe 0T, TAIBT 400 . oA H BRI S i) i
RN A R & X— 5. h T v FaRRXE, 18] SO 2 T AR A — 45 F4 AL T
M (PFRA R SCEA” (Definition Modeling) ), RIFLEA: sUBLAYfigfish A 2R3 L
EESE T (—8IAILAFa) R s A B, (HEHT
A RIRERILER . TR 2 U B AN T4

T ST AT 45 A AT sciml (BRI, hid] . JEzsial. Bl i KAtk & %2,
SN2 SCHEAR R AR SR G (1) JLFHM# (Coreference Resolution): #ff 2 3L
A g 1 A R SEAR ) 44 1R AT AR IR s (2) fivga SEH4R 5] (Named Entity Recognition) : i i
SCASH TR T A 4 TR TN SE A (3) Bl (Metaphor Detection) @ A il S 4
b I B Bl AL RN s (4) JRNERTE (colexification) : K§—Fhif 5 A4 TN EH ¢

VAT R R AT — R R SR R, B — AR TS, T SRR — AR
2 DR TR LT SCA AT AR A IR 5L




AR R

IR —1TES . Horb, m =Ml R BRI A R R X IR T80 e — PR 15
T Z AR T ] — I B o SR &) 7 A — 2L

i AR B R SO BiE SR SR F AT S N M E R Z P AT SO AT
55001, 2B ER SCERIBR I ECE 5 TR W, IAIEA B e] R 2 R (1P
X AEST), XRELTR] SCR RN E P, XA B s M T 2 e B B LA
ERROE S P Ry NI 757 GBS i | T -7 i M1 S Q[P 22> 2 P U
B0t SCRPRE X T2 AR 2 A B A YN ZRg M AR o [RII - (] — Rl A A ] 7
FEAAETERLZE o B AR B A AR 20, — ok, 5 IR SR SRR b I 35 L
B, RXFES RO AU ) T8 WLE o BAORUE, 1 SO TR — A T E
WL FeAE R, HOBR A RS BRI T

1.3 A UENX

BRAFAE— NS 6] W, =S8 E SO — MRS ], fRAEfible & wAERHE
ASEAGE] wi € WHREL, HRBERN . POW = wy). Hr, i M ARG E X
NA)TASE] S I — NI R S = (Wi, ., Waed, HHBIROMSICHE: P =), H
Hosi = wi, o wade WAL, & X—NEXAR Z, HARTPRIFIAE R Z, A E#EE
WL bz B, AT W BSIE o X S g MENET S, R E—A m KU
WX EEEG: S. = (2,0, Ho o AERTNLIEL, S, RERTIE L. AFRE
BERYETCE X zio

% 183 2 U A, R 2 & Z li A2 115311 (Multinomial Distribution ),
Bi Z ~ PN(p1, ..., pn), HFEARZSHFIRIANE w B AY N M . X BT aF5E )
J 8, ASCHAA Z e LA &, B 45— Ml w ISR T, ATAB S E
[T R BERY TR ST Z, 0 HE—20 M, ARSI B TR SCT0 K SRR TR SO
E XS, BT SCICRAE R SRATE S, B TR T SCtaT PAFIWTZ Al Y
RETE X, XEE SGRFEBONEE . KA MO AR RS BT SOROE SRR K
W1 _E T SCRNE, — BRI X ASSCRTIE wi TR SR ¢ = (Wi, oo Wist, Wists o, W o
HpMsriBs SUEIET , Zo M e FEEH w IS N, B an R o7 U 5 R0
HRAR

P(Z,,w,c) = P(Z,lw,c)P(w,c) = P(Z,|w)P(s). (1)

Hrr, s ={w,c}o X BT SCHOE I :
P(Z,,w,c) = P(Z,lw,c)P(w,c) = P(Z,|w, c)P(s). (2)

XFF S = s HRRRETND w, 5, HESCER Z i F T w, Frat iy
ety &, ASCH R RIERIEL A -
* XA ERN ¢



AR R

155 %45 Wi Z K5 Zy Lclw & D
TS (H5HI1E) S fepkin] LA v {ci} v
TS (A ) S iA] LA v {ci} X

A 35 LA 1] X {c;} X

fir 44 SEAAR LA 4 LA 1] v {c K} X

g e 0 S X {ci I, HY X

TN BT S HARES S5 v e HY X

% 1A RN Z AT S5 RS E

* SRR K

© ALLHERER H
FEAp AN K ST AZE 2 i iR, A AR iCA S, SRR,
Bansk B AR PR E S, SHAFYIAY ST . M AR i ORI MR A T
TS TR SRR A

P(z,w|€) = P(zlw, E)P(W|E). 3)

1.3.1 ASGHIRES

) SO BB e € HAREEAE B R SCh i E S, HHE @ 406, i, B
AL BT PUORSERE, BE & JlH AU K BTN ST ¢ B SCIS AR5 0T AR AR
e FPHIAA e BT 55 B e — R SR O, B dialileE W F)
5 A Z i mdph . AN RR M BT B I 1R SO E — IR MR L z € Z, Hirp
z = max; P(zlw, ¢;)o A EUESNF 2 E—ANESGER), RI—NMAELF 2 = {g15 8k},
H A2 RO iR R 21, B, max P(gi, ..., gklw, ¢i)o AR SCEBEFFTIA] SO AT
%
1.3.2 HitfES

SREZ SCHEAT RS54 H A el wi BZRAL, 1EHE X Z i93enl, 2% BT
ST R L, BAEE & Eh, PARGR A TR EE SR O BRG] SOHEAL S A E 5
R ABH T BB ZEG .

2 ERSMEIRNEE LR R IR R 53

T SO AT 55 RAE BRI . A ARIRIPTFEINE S, X5 A AR S AR &
J& . BARERTIRIE . BECE M A A PESAA AR . AT BN 43 T3 S B
T OLTERLZE . R L ANTR] 3 S8 BN B3] SO BB DA S AT T 2 B RE

-3



AR R

TR XE O OERMYT BRI PRy AR R 2%
Senseval-20] 3 242 5,766 2,282 1,335 1,093 5.4
Senseval-3 "] 3 352 5,541 1,850 1,167 977 6.8
SemEval-07!"] 3 135 3,201 455 375 330 8.5
SemEval-13"] 13 306 8,391 1,644 827 751 4.9
SemEval-150"] 4 138 2,604 1,022 659 512 5.5

SemCor!'"] 352 37,176 802,443 | 226,036 33,362 22,436 6.8
OMSTI!H! - 813,798 30,441,386 | 911,134 3,730 1,149 8.9
WNGC!['”] - - 1,621,000 | 449,000 - - -
OntoNotes!'”] - - 1,500,000 - - - -

% 2 ARIEREREER G ITR I

21 BRI

HENE RIS N NRHRET FEMES, XEMAFBRES—BIafcs, B
RAEWTL S EL, BRI DA B Se i ds . R B 2R AR TR B E 5
SCATFEAR NI A L SEAR%: (ground-truth label) . FEiR] SUHBATL S5, 75 240 & Rl
B HbRiE, PARCEAE LT ORI S, A0SR H AR RN A )55 (content words ), EI
O i I i N | 7 i1 i o= 7 8 5 Wy g R 12 S5 ) 1109 e R A E SO v g
H, FRHECHER AR . 2 2R TH R BE ST .

2.1.1 SemCor

SR SemCorl' 1 g W ARH i 24T & 1 . H B8 AR . ok . f
TATI ] PR B R « B B R 09—y, s T . AR, )
VLSRR IRSR, TR AT & BT DME X BE IR — RN X
BHEEN TARE T A 1SS R 2R AE 3L, #0551 226,040 45hRyE:, 3 352 fEfi iRt
PR SCE . Hodr, o SR 1 [R)3 1% Wordnet 1.4 Jrj#i 1]

2.1.2 OMSTI

OMSTI (One Million Sense-Tagged Instances)!''1 23T WordNet 3.0 F5yd: 1) KFAELE
BHE, BET  PEREFN T4 MultiONUL R SNSE M (GIZA+UT) SRR B
TR R, 2 B s d T — A8 R R . R X R Al BR i ok —
SEEHRIPRTE , WO E R ARV A, IERRARTEZR T AR 83.7%, [AIETE
P FRABLTE e

SRS I B R AR E A MR AR, A — 24

_4.-



THHESEE TR

2.1.3 WNGC

WNGC (WordNet Gloss Corpus)*¥ Wordnet HFEIFIlE RS HE8—E, H
Bl 554 3 Wordnet I %f R 1) CIR_ETE, MBSO — A0 AR TR . X —TERHEE
FiEa e 23R, B2 T WordNet HH RS B, ANFEEAT] N TARHE .
T X — i ERHE G JN TARERE, A gaA & IR 7 Jo i
2] o EMOTEIRERTERER S TR 215 L, X5 T 2157 WordNet 7%
FEH
2.1.4 OntoNotes

OntoNotes 5.0°42 i BBN Bl BB Hi 2 K. BA VR RN KEEE
Bl s e 3 W K BiERHE . BB T 2 FHABR SR, wdEE . U, K.
BRI T, SCRRe s, HrSCRIBT R R S =FE S, FevE T8 B 4518 45 5
(B EAEESANE IO ) ASGOE SUE B . Hh 3 scifsyr (K2) 150 T3 sCn) 1y
T SRR R 1 17 1] B2 AH I 3] SC1) WordNet,
2.1.5 SemkEval

SOV IASE (SemEval) J@FE A RE UG TE 38 R et nd, WA 7 IHlE
TH AT S A FMNALE o A AHE TAEU T X E AT T TR & — Ml TOR USRI A, 43
W2k (1) Senseval-2P1; (2) Senseval-31 fi{F4% 15 (3) SemEval-07!1 ({145 17; (4)
SemEval-131 fi{£4% 12; (5) SemEval-15U"1 fi{F4% 13,

2.2 FMREE

AR T ARSI B SCARTERE , FR AR B R SE R A S EATZ B K &R, Pt
TR — a7 R RIS, DAUT 2004 7 5 B =R iR, 4% WordNet,
SR BabelNet, #XCGEHRLAHTTT DA I 3.

2.2.1 WordNet

WordNet!" ™) f2 i #FAR MBI 7 K 1) — A RIS LA . S 9lA0 %) &%
R, B AR SCIASES (Synset) . AT KR NN, BA KSR,
oo ] SRS A R e M, IR MR SO, 9% P — R R A A B
(R 7~ A THEIRS o IX SRR T 2R B T JEL5 4 A )i 5 24011 (Linguistic Knowledge ) .
7] SCFISE G 2 [0 OB RIS L FR , WordNet 51 TR IR : (1) R AisERR: (2)
WABEXR: (3) HRXFE (AR . 505 7 b Tk BT HrS 2 R 1A
AL, FEAERIL T 45040 T AR AE (World Knowledge )

th - WordNet (f9£H SUCHEIISE I F 1 BP A0, FSEA R ELZTF % T H3 60 Fhifk

*https:/ /wordnetcode.princeton.edu/glosstag.shtml
Shttps://catalog.ldc.upenn.edu/LDC2013T19
O[] SF Z B A 56 22— RG], T IRMERERIR B LR BEFRA gloss.
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AR R

KR WAEH FOGASEEE | BOsE £ 0E!
WordNet 3.0'? 155,287 117,659 101,863 2.50
HowNet! 237,974 14 35,202 13 - -
SyntagNet - 71,025 - -
BabelNet!*"] - 22,130,060 - -
BabelNet EN - 13,964,713 - -

3 AR AR R RO G X E

F 1) WordNet” o JH: rr o 0] 9 40 45 py B PR3 LR R0 5 2 SE e & R v SO
1] CoW* HI G I 5 BT A i v SRR
2.2.2 &1

HIM - (HowNet)U! 1z i fy #E R AR FIEE 5 Je A= 7F 20 HE228 90 AR AT A i —
PR SEANIE T v SO iE E HIR R, BRI DU R s T (B SR 48
A, FERAEAT LT e SOl S e AT 15 OPRYE . HIPAE S — SR BRI, (A3
T, SURFRAR A T BRSOk 3T, RIS 5] @ EAnxt i @ (8%
WARARAE) ARSI AR . 09— 51, 2500 2/~ SURAR G [A]d
FEZFXR, BIINE IR, RIXKR. KR, W URRE,
2.2.3 BabelNet

BabelNet"™"! 2t B Th25 —I# I BT AR . H BTCERORRY . B aiE 5 i) R RIR
JE . ‘ELAZETE WordNet Sy LA, 7RI e RSt i) Sl & il A BE 2 S5 SRy o 5 Rk
GO, AUARMERS TR MERAEE . ERLAILAE, A 275 S WordNet, FRHIY Z1EFAA
HERFESOR, B 721k 520 M EAES . L WordNet UM AT JIH, BabelNet
AR T TR, 3 S XA A s i 4 SR R R DA S 2 S BEE (BN
SRSXT A ) BRI, A B TS Il . SR AR

"http://globalwordnet.org/resources/wordnets-in-the-world/

$https://bond-lab.github.io/cow/

https://lope.linguistics.ntu.edu.tw/cwn/

VAR T WordNet ¢ B i e v 4y 0B SC, - R0 R SO0y XS AE 1 X M RIRIE AN TR B 3, T A s 3t

iz k.

"2 SR T — AT A A 5 (0 ] RE SO, I FLHE M gt B S
P2https://wordnet.princeton.edu/documentation/wnstats7wn
Bhttps://openhownet.thunlp.org/
UL S
“HowNet 3 1% [0 SCHISEAIME, X BAE BILmMEEcE. Ji4h, MM dtds 2,540 4~ L5
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AR R VR R
2.3 ERTE

5528 Yz Wi/ YNRTERE i) i B

EX HB RHR
GASP] SC WN v X v/
GlossBERT"”) SC WN v X X
N EWISE["] SC WN v X v/
; EWISER SC+G WN A
" i MLWSD*] SC WN X X v/
B 5 MLWSD#* SC WN A A
o RTWE] SC WN v X X
e RTWE* SC+G WN o/ X
B BEM[7 SC WN v X X
1T Fe Z-reweight!’] SC WN v X v
% b2z SACE] SC WN v X v/
1155 SACE* SC+G WN v X v

ARES[] SC+WK WN v X
ESCHERI'] SC WN X X
A ConSecl! SC WN v X X
£4% ConSec* SC+G WN v v X
KELESCP! SC WN v v v
A Vec2Gloss! - - v/ X X
1£% Generationary””l CHA+SEM - v X X

ry
[36] -
. ] WSD TM WK R A
WSD_LSAL] SE10 - X X X
50 Lesk!™" - WN v v X
4 FT A Lesk ext[*] - WN v v v
A SREF[*] - WN v/ v v/
" UKBU] ] WN+ESWN+EXWN v v
oK [42]

. Babelfy - BN X X v
gl AT EAE SyntagRank ] - WN v v v
WSDG!*] - WN+BN v X v

2% 4 9] OB LT YR gl . B SC FEor SemCor 1ERNE, G F/8 WNGC 158 E, WN f{FE
WordNet, FHEHEHEPI2E T =38, UEEXL. AR,

T SCIA 0 BB M ) 22890, T DA S B L P B s o BT 55 se 4
FIARBREN AT S5 o Hor 5e A ARIRBI I 7 IR AT I ZRTERL, (GE SRR R AR
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AR R

PR EN TR SO . M 2T SR MO A 1] AR iR b, allad =~ 31—~ 1]
TEEITE UL AR RR R X A ), RS HERLAAT 55 B & U], SCRT A R 73 2R AT
55 WSUGRAE S BUREUE S FIAE U SS . g, XA T 78 42 Bl
AR, Bl TR R A AR — 2. 2P B e Je B SO ik e
SChREE, BRI 2 ST SRR 204, 3R] PAS > ey efie— e A0 o
3
2.3.1 EEFMRIREY

SE A RRIKE AR e bRt AR 2, OGE R AR R HE W iRAE B S0
AT S, AR A% 35 WordNet A 2¢, A& TRIEAYE L (5 T NSRRI AY JE5C
ARFR) . WERIFRLA O AEMEESZ RIB9K F AN [ BB A [+ 75 T )
W, R M TR WRIARIA I, ARSCRFX I 0 A T AR E T E AR R
EIB BRI PR

2.3.1.1  JEFHUPLPEDC RGN 5. RAIRYRIRIK S BA R TR E R MR A Y
— AT A RN E I BRI LT, B R AR E R, MR A
SRR T B XTI BR A 7 8 B Al R A A S IR R Ik 2R AR R )
T T SRR R RIRREXS < wi,wy >, FF TSR X PSRN BT A R REAL A YT
SR FE VP43 score, SEFRVE S KX G A G4 AR i ) i o
PATT R EE S core 1 5E X -

score : ZxXZ — [0,1]. “4)

AN 2% FEAN R AR ¥ . Rada % A1 DK Leacock 1 Chodorow ! 1 T
¢ WordNet HAilE A b A3 el 1) e 80 5 FH AR ARAE B B 64 Lesk kU 34 el
EMHURPIHGTE— R FRINESGREE, —HFHA BRI GEEE. hRE
() Lesk ™t 2 g AR B R B AIEAE JE o 3% Se B0 SUHE BRI G AR 75 2L R] s
ZIEFT AL A RE L, WT— KA N AT E, R ELRAH kAN
Xk#E, IRABLUEIR A FRE AR OKY), XX TRAIFME, EAREATE
2o AT ROEXA A, 2y R U AN R 2 ()3 SCHRObE T Bl
MAZ IR R R SCRZ IR 0 P BE i SCRURH U THA5E, AT RE B[] 52 24 JE IR 31 O(N x k)
SREFU | ff BERTY A 1R SCRNE X (Fa . 7w BRT—/A) A 5 i A7) F-BrE2 1 AL
PN, TERB AR .

2.3.1.2 JETFPSER . BT AR R ABR AR SRS, R KR —
AL R 25 BRI BT AR E R A . UKBU Y S50k BRI 1 72X, A1)
JAA~ AL PageRank S RAS 2 e et LI HEA ; Babelfy ™) NIRKER SCIH A 45 Fil i 44
FHAANE S G, RO 1S IR A WordNet #1131 417A 1 #HH1H Y BabelNet

-8-
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i, IR (clique approximation) Y 7y R24 2] FITH &I 15 &, 5 SyntagRank ™!
TEEA W R (paradigmatic relations) FHSIN T4 & FR  (syntagmatic relations) |
BV 24 TIRiE R BRSO KRR, N THRBOX MR R, BN T — MRS B &
ML, B SyntagNet!™l, &R Y ESE A 98 214k PageRank 5%, WSDGH
P25 K] S B — A R, FE47 SR I T WordNet 1 BabelNet 1/
KEER

2.3.1.3 @RS RN TE . R UL TR SOR C iR 2R N TR 2 TR SCRE TR
ePEmiF (selectional preference) Bl E#EFR | (selectional restriction), HJ-53EANal4E
B, 2 JEryis SR B, B RS . Blan: “iz” HeeS5na
FYFERL, XS Z A VCEC R AR LEE SR ] DAHERR B2 T . 8 KB E R T DA F 2
SRR RAB T AFAE R BRI (Blansh =X R ) Wi SR B B RN, 2 51
RS SRR, AT DA AR A TSGR e N R TR . R TR EE X
KHehs, WTLCRAZ R, A s/ MR, R et B
FERPMEE D R DU 25 0 o AR X T YA I RICR AR B AN T A 2 Y g ST
IV o
232 BEBHRERHEE

W =B 9K B BBA MO T 9 206 T 10 SO B B S, AR @ SR ™
AEARRMEEES, M EAIERERE . BB AR5 2k s B0 LR SC 88 AR A
Zest. WILMEERZ RS RMS, Ml SE00 AL, 31 E XAEBME
SGEWASE]) Z B— D200, %51 R BRI -

p@(Z|Ca w, 8) (5)

X AR5 AL R M 73 F S SR o 53— FREIRRFHIE SO — il R R AESS . I
— M ERRAR G AR S TR SGE SRR — 1R S o X R R N S —
A B SCFRY g, FITE SRR Ky, RFHE R AN T, 5 s pER
AT IERS, PERCA AR A 1 AR AA ] -

Inn(q,(w, ¢, &), ks(2)). (6)
AT S5 AT DAR AR 28 B B ANt be i 2%« oK IIBg 625 (max-margin loss) 4. 52
B HA A REFAESS (BIAnSCARNZ) fsgm, ARk -HRINGAT S5 & X, BIFGRr

A it XPHEAE—E, BARSAE BARE SIWRTIGIE . T3 M B R A AR AU
553, RV A A B SOE o

2321 SpRMESs. SANTEBEN AR B, PIRBAIREGD T = S
WURRE T AR, SO0 DO TR Ak e 3 AR R G, e 0 i 3 U1 R el ) 8 AN 53 e

-9.
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5, BEA TIRBESA ST i SO B — Nl BN TRREAE S 0, g i B
e XS] MLBETT I R RO R F A, BIANRSE  HTE IR D A A A A
WP HMETT R B FIE S R SRR REOL R B — R, HEH
BN LA BB AMRAS . St T RO, #10 SemCorl, 1R
ZALARE T FIRAF AR T X S AR e MR BR R e UL AR I
MR T (FR)2) MEMZTT kmepskt . SVM BIEI 45 . X80 AU
FITE SCARERTE R, IXEE TR SO ARMUPE RS, AR SO R S AT A
) B BT EAAAE RO, RISRBOC SR R Es i IRV AR TGk gk
TS A AN B Y T

o FERRRAE TR 2 > ) F2 BOR TR LA 22 M 25 b A7 00 2, IR AR 22 20 FSE AT
BRIRZRERITR 2 B A5 SR £ 2 DA SUHOBTTE R A A X 845 AL 7 OB (R
APIEERM KRG (S WFE772.2.1WordNet B/ 47) - GASU FI KB C 128 A
(LSTM), & A5 Bl T2 @A B 4 288 . GlossBert™ 5 A5 B HFFI L
NI, RS E SO SCRRL @ AR PERCH — A 0 R 55 . Z AR Z H) I 7l
YN GIE SR8 2 1R SCZ AR 95 & . EWISER ) 4iis 1 5 SCRTE SCim &, JH X4
R R E /- B it s B BGIERRAS EWISER ) HE— 2571 RN 2 v ) 5%
R, BUASEZ A SR, (A RAE i ORI 2 i A b . MLWSDE]
ML B HIAREBIBIREA IE— D IEBARZS , IR AT 55 1 SO 2 hRaE 7 264
%, B AR R Y 56 R AR B R T 2 A R AARAS . RTWERY R E 5
H AR Z TR G, I I AR S LR SO (5 R £ SRR v ] i
JZH

2322 BMKFAESS B TIE SUSFAEIE AT PATE A AR R A E IE R, AT
SR FRAR AT 1R S TR A ) TR . BEMTTY 0] F A Gt A5 45 43 5l G A s SUA) TR0 BT
3 ZJEA IAEPY BT BEM, F T ERARY 7 3 R U G LA 1 N2 2T i 1) AL
SACE™ %4l b7 SCIATL A i) LB B MO, R A AR APE, 4RBIEZ /Y BF
3. ARESUY il BRSCHYE G X R WEREESE, AL (BlIngEEmRl) LaRE]
BRI ETRIC, ARSI =F & 1y bR SCRAE [ =

2323 WIAIES  BIGHES IR T TR T ERE 0 ) T L T AR BT 17
SHE T S35 LR, AT T AT ZBARRR  1 SL4M e D . ESCHER ) 4
VIR 45 17 FH i SO o Rt T SAMAT I 0 TR, 2 A A
ConSecl™™) I & iy P 71 ¥ SCF EL 23l TR SO L, AT O 2 T 37 SCAOAE
. KELESCU) 7 ESCHER FERH 1, AVHZHAH A4 T2 UM T it S 1
R R R U, MBS E 2 F R

-10 -
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2324 HgRAES  ARNGUESE BB S, W—A B RN R E A
JRGE SL, X MBERR A E LA (Definition Modeling) o ST A AT 55 11 il ad 8
VTS SO, A5 s S R T R o AT B8 A AT 55 14 R SO A ZE R
R, X ARSI IR R T HES T I B AR, ST T ahAS R
ERSCrE b BT R SOE A 55 B SOOI E LA - A At
BV A i R — L A1 A 9 A SR AT DA R IR ER A 22 R £ 10, K
FAEER ALH T, BIIAERST AR LKA Transformer ™ SRSZHL . e
KRR AR ABCN — D BARTARE R5], KRGS ZIEMER. 2 GRS A
TRt B BT 2 SCHTRY 31, X 285371 mT AT — > e e e ) el
A AL 2] B AR A i ) 2B — MR G R . AR R E
FRPE, X — RS AT DAYERS T B HAiE = P

233 /A EEXEBIRRSE X

Te B AR IO TR AR, AFEAE A 8, & AN 35 B A B N i s 1)
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HiE SE02 SE03 SE07 SE13 SEI5 ALL %4 7 i Bl
ITAP - - - - - 80.0
LB Mono? - - - - - 174 135 4.5 237 163
MFS Cop 65.6 660 545 638 67.1 655 - - - -
MFS WNI1 66.8 662 552 630 678 652 - - - -
ChatGPT - - - - - 73.3 - - - -
GASP! 722 70.5 - 672 72.6 706 722 5777 76.6 85.0
GlossBERT ] 777 752 725 76.1 804 77.0 79.8 67.1 79.6 87.4
EWISE!] 73.8 711 673 694 745 71.8 74.0 60.2 78.0 82.1
EWISER [/ 80.8 79.0 752 80.7 81.8 80.1 829 694 83.6 873
MLWSD! 784 77.8 722 767 782 77.6 80.1 67.0 80.5 86.2
MLWSD* 804 77.8 762 81.8 833 802 829 703 834 855
RTWE*] 834 829 745 82.1 853 827 849 728 87.7 879
RTWE* 852 833 77.1 838 863 84.1 857 751 90.6 88.7
BEM /] 794 774 745 79.7 81.7 79.0 81.4 68.5 83.0 87.9
Z-reweight’ 796 765 719 789 825 786 - - - -
SACEM] 824 81.1 763 825 837 819 84.1 722 864 89.0
SACE* 83.6 814 778 824 873 829 853 742 859 873
ARES 78.0 771 710 773 832 779 80.6 683 80.5 83.5
ESCHER!'! 81.7 77.8 763 822 832 80.7 839 693 83.8 86.7
ConSecl*”] 823 799 774 832 852 820 854 708 84.0 873
ConSec* 82.7 81.0 785 852 875 832 864 724 854 89.0
KELESC[] 822 781 767 822 83.0 812 843 694 84.0 86.7
Generationary ™! 77.8  73.7 688 783 77.6 763 79.8 633 80.1 84.7
Lesk extl*”] 584 594 - - - - - - - -
SREF ] 7277 715 615 764 795 735 785 56.6 79.0 76.9
UKB!] 59.7 579 41.7 - - - - - - -
Babelfy[*”] . 683 627 659 - - - - - -
SyntagRank*) 71,6 720 593 722 758 71.7 641 - - -
WSDG] 68.7 683 589 664 70.7 67.7 71.1 519 754 809
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Abstract

Word sense disambiguation (WSD), which
aims to determine an appropriate sense for a
target word given its context, is crucial for
natural language understanding. Existing su-
pervised methods treat WSD as a classifica-
tion task and have achieved remarkable perfor-
mance. However, they ignore uncertainty esti-
mation (UE) in the real-world setting, where
the data is always noisy and out of distribu-
tion. This paper extensively studies UE on
the benchmark designed for WSD. Specifically,
we first compare four uncertainty scores for
a state-of-the-art WSD model and verify that
the conventional predictive probabilities ob-
tained at the final layer of the model are in-
adequate to quantify uncertainty. Then, we
examine the capability of capturing data and
model uncertainties by the model with the se-
lected UE score on well-designed test scenar-
ios and discover that the model adequately
reflects data uncertainty but underestimates
model uncertainty. Furthermore, we explore
numerous lexical properties that intrinsically
affect data uncertainty and provide a detailed
analysis of four critical aspects: the syntactic
category, morphology, sense granularity, and
semantic relations. The code is available at
https://github.com/RyanLiut/WSD-UE.

1 Introduction

Disambiguating a word in a given context is funda-
mental to natural language understanding (NLU)
tasks, such as machine translation (Gonzales et al.,
2017), question answering (Ferrandez et al., 2006),
and coreference resolution (Hu and Liu, 2011).
This task of word sense disambiguation (WSD)
targets polysemous or homonymous words and de-
termines the most appropriate sense based on their
surrounding contexts. For example, the ambigu-
ous word book refers to two completely distinct
meanings in the following sentences: 1)“Book a
hotel, please.”, ii) “Read the book, please”. The
phenomenon is universal to all languages and has
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Tsinghua University
School of Humanities
yingliu@tsinghua.edu.cn
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(a) Model uncertainty (b) Data uncertainty

Figure 1: Two types of uncertainties in the case of clas-
sification. The green line indicates the true model (de-
cision boundary), while the red shows possible models.
Circles and triangles with different colors illustrate clean
and noisy data with corresponding labels.

been paid much attention since the very beginning
of artificial intelligence (AI) (Weaver, 1952).

Existing supervised methods (Blevins and Zettle-
moyer, 2020; Conia and Navigli, 2021; Bevilacqua
and Navigli, 2020; Calabrese et al., 2021; Huang
et al., 2019) cast WSD as a classification task
in which a neural networks (NNs)-based classi-
fier is trained from WordNet (Miller et al., 1990),
a dictionary-like inventory. Although they have
achieved the state of the art on WSD benchmarks,
with some even breaking through the estimated up-
per bound on human inter-annotator agreement in
terms of accuracy (Bevilacqua and Navigli, 2020),
they do not capture or measure uncertainty. Un-
certainty estimation (UE) answers a question as
follows: To what extent is the model certain that
its choices are correct? A model can be unsure
due to the noisy or out-of-domain data, especially
in a real-world setting. This estimation delivers
valuable insights to the WSD practitioners since
we could pass the input with high uncertainty to a
human for classification.

UE is an essential requirement for WSD. Interest-
ingly, the word “ambiguous” (in terms of the task
of word sense disambiguation) itself is ambiguous:
it refers to i) doubtful or uncertain especially from



obscurity or indistinctness, and ii) capable of being
understood in two or more possible senses or ways,
according to the Merriam-Webster dictionary!. The
conventional treatment only considers its second
aspect but disregards the first uncertainty-related
sense. In reality, there are many situations where
uncertainties arise (Yarin, 2016). The first situation
assumes a true model to which each trained model
approximates. Uncertainty appears when the struc-
tures and parameters of the possible models vary;
we refer to it as model uncertainty (Figure 1 (a)) in
this paper. Model uncertainty can be reduced when
collecting enough data, i.e., adequate knowledge
to recognize the true model and out-of-distribution
(OOD) data is always used to test model uncer-
tainty. It has been observed that WSD is prone to
domain shift and bias towards the most frequent
sense (MFS) (Raganato et al., 2017). Therefore,
it is essential to quantify model uncertainty in the
task.

Another uncertainty is related to the data itself
and cannot be explained away, which is referred
to as data uncertainty (also called aleatoric uncer-
tainty). Data uncertainty happens when the ob-
servation is imperfect, noisy, or obscure (Figure 1
(b)). Even if there is enough data, we cannot ob-
tain results with high confidence. WSD is context-
sensitive, and the model output could be divergent
due to partial or missing context. Even worse, some
words have literal and non-literal meanings and
can be understood differently. With a fine-grained
WordNet (Miller et al., 1990) as a reference inven-
tory, the inter-annotator disagreement is up to 20%
to 30% (Navigli, 2009): even human annotators
cannot agree on the correct sense of these words.

In this paper, we perform extensive experiments
to assess the uncertainty of a SOTA model (Conia
and Navigli, 2021) on WSD benchmarks. First, we
compare the probability of the model output with
the other three uncertainty scores and conclude
that this probability is inadequate to UE, which is
consistent with previous research (Gal and Ghahra-
mani, 2016). Then, with the selected score, we
evaluate data uncertainty in two designed scenar-
ios: window-controlled and syntax-controlled con-
texts, which simulate noisy real-world data. Fur-
ther, we estimate model uncertainty on an exist-
ing OOD dataset (Maru et al., 2022) and find that
the model underestimates model uncertainty com-

"https://www.merriam-webster.com/dictionary/
ambiguous

pared to the adequate measure of data uncertainty.
Finally, we design an extensive controlled proce-
dure to determine which lexical properties affect
uncertainty estimation. The results demonstrate
that morphology (parts of speech and number of
morphemes), inventory organization (number of
annotated ground-truth senses and polysemy de-
gree) and semantic relations (hyponym) influence
the uncertainty scores.

2 Related Work

2.1 Word Sense Disambiguation

Methods of WSD are usually split into two cate-
gories, which are knowledge-based and supervised
models. Knowledge-based methods employ graph
algorithms, e.g., clique approximation (Moro et al.,
2014), random walks (Agirre et al., 2014), or game
theory (Tripodi and Navigli, 2019) on semantic net-
works, such as WordNet (Miller et al., 1990), Babel-
Net (Navigli and Ponzetto, 2012). These methods
do not acquire much annotation effort but usually
perform worse than their supervised counterpart
due to their independence from the annotated data.
Supervised disambiguation is data-driven and uti-
lizes manually sense-annotated data sets. Regard-
ing each candidate sense as a class, these mod-
els treat WSD as the task of multi-class classifi-
cation and utilize deep learning techniques, e.g.,
transformers (Conia and Navigli, 2021; Bevilacqua
and Navigli, 2019). Some also integrate various
parts of the knowledge base, such as neighboring
embeddings (Loureiro and Jorge, 2019), relations
(Conia and Navigli, 2021), and graph structure
(Bevilacqua and Navigli, 2020). These methods
have achieved SOTA performance and even broken
through the ceiling human could reach (Bevilac-
qua and Navigli, 2020). However, these methods
treat disambiguation as a deterministic process and
neglect the aspect of uncertainty.

2.2 Uncertainty Estimation

Uncertainty estimation (UE) has been studied ex-
tensively, especially in computer vision (Gal et al.,
2017) and robust Al (Stutz, 2022). Methods cap-
ture uncertainty in a Bayesian or non-Bayesian
manner. Bayesian neural networks (Neal, 2012) of-
fer a mathematical grounded framework to model
predictive uncertainty but usually comes with pro-
hibitive inference cost. Recent work proved MC
Dropout approximates Bayesian inference in deep
Gaussian Processes and has been widely applied



in many UE applications (Vazhentsev et al., 2022;
Kochkina and Liakata, 2020) due to its simplicity.
During recent years, the field of natural language
processing has witnessed the development of an
increasing number of uncertain-aware applications,
such as Machine Translation (Glushkova et al.,
2021), Summarization (Gidiotis and Tsoumakas,
2021) and Information Retrieval (Penha and Hauff,
2021). Nevertheless, little attention has been paid
to the combination of UE and WSD. An early work
(Zhu et al., 2008) explored uncertainty to select
informative data in their active learning framework.
However, the uncertainty estimation for WSD is
not explored extensively, as we do in a quantitative
and qualitative way.

3 Uncertainty Scenarios

3.1 Problem Formulation

Given a target word w; in a context ¢; =
(wo, w1, ..., w;, ..., wyy) of W words, a WSD
model selects the best label j; from a candidate
sense set S; = (y1,Y2,...,yarr) consisting of M
classes. A neural network pg with the parameter
0 usually obtains a probability p; over M classes
by a softmax function which normalizes the model
output f;:

pi = SoftMax( f;(wilc;; 0)). (1)

During training, the probability is used to calcu-
late cross-entropy loss, which can be recognized
as a probability for each candidate class during
the inference. Such a point estimation of model
function has been erroneously interpreted as model
confidence (Gal and Ghahramani, 2016). The goal
of UE is to find a suitable p; to better reflect true
predictive distribution under data and model un-
certainty sources. Suppose we have a reasonable
score s(p;) € S indicating UE, where S is a metric
space, we expect s > s’ when a situation a is
more uncertain than b.

3.2 Data Uncertainty: Controllable Context

Data uncertainty measures the uncertainty caused
by imperfect or noisy data. We consider that such
noises could happen in the context surrounding
the target word, considering WSD is a context-
sensitive task. With different degrees of missing
parts in the context, the model is expected to obtain
predictions with different qualifications of uncer-
tainty. To simulate this scenario, we control the

range of context based on two signals: the window
and the syntax, as illustrated in Figure 2.

(a) window-controlled context

discourse obj. Nhops H=N
T hneTs T sl N
P T S o
e e | please book | a | hotel |«
e SR

(b) syntax-controlled context

Figure 2: Two types of controlled context in the data
uncertainty setting. The target word is highlighted in
blue. The box with a black dotted line shows the final
chosen context. We show the dependency relation in
blue and red.
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We choose L words both on the left and right
of the target word w; as the window-controlled
context ¢ € = (wy, Wi—1, Wi, Wit1, ..., ), where
| = max(i — L,0) and h = min(i + L, W) are
the lower index and the higher index. With a hy-
pothesis that longer context tends to contain more
clues to disambiguate a word and a suitable UE
score s, we expect that s)'C > s)VC, where two
window-controlled contexts are extracted with the

length of @ and b, and a < b.

Window-controlled Context

3.2.2 Syntax-controlled Context

In our second controlled method, we utilize the
neighboring syntax around w;. Specifically, we
parse the universal syntactical dependency rela-
tions between words using tools of Stanza (Qi et al.,
2020). This is represented as a form of graph struc-
ture G = (N, R), where A denotes the nodes, i.e.,
each word, and R =< n”, nt,r > is the relation r
from the head node n” to tail node n'. For exam-
ple, when 7 is nsubj, that means n” is the subject of
n'. We iteratively obtain a syntax-related > neigh-
boring set with the H hops of the target word w;
as C%P in the following approach. Initially, C%P
only contains w;. After one hop, C%P collects the
head node and tail nodes of w;. The procedure
is repeated H times, with more syntactically re-
lated words added. We also rationally hypothesize
a smaller sPP, which measures uncertainty under

*We denote this scenario as DP, since we utilize depen-
dency parsing as the syntactic representation.



syntax-controlled context, favors the context with
a larger H. We highlight that the syntax-controlled
context leverages the nonlinear dependency dis-
tance (Heringer et al., 1980) between words in
connection, compared to the linear distance in the
scenario of window-controlled context.

3.3 Model Uncertainty: OOD Test

Model uncertainty is another crucial aspect of UE,
widely studied in the machine learning community.
Lacking knowledge, models with different archi-
tectures and parameters could output indeterminate
results. Testing a model on OOD datasets is a usual
method to estimate model uncertainty. In the task
of WSD, we employ an existing dataset 42D (Maru
et al., 2022) designed for a more challenging bench-
mark. This dataset built on the British National
Corpus is challenging because 1) for each instance,
the ground truth does not occur in SemCor (Miller
et al., 1994), which is the standard training data for
WSD, and 2) is not the first sense in WordNet to
avoid most frequent sense bias issue (Campolungo
et al., 2022). 42D also has different text domains
from the training corpus. These confirm that 42D
is an ideal OOD dataset.

4 Experiments

4.1 Model and Datasets

We conduct our UE for a SOTA model MLS (Co-
nia and Navigli, 2021), with the best parameters
released by the authors. They framed WSD as
a multi-label problem and trained a BERT-large-
cased model (Kenton and Toutanova, 2019) on the
standard WSD training dataset SemCor (Miller
et al., 1994). We follow their settings except for
using Dropout during inference when performing
Monte Carlo Dropout (MC Dropout). We set the
number of samples 7' to be 20, conduct 3 rounds,
and report the averaged performance.

As regards the evaluation benchmark, we use
the Unified Evaluation Framework for English
all-words WSD proposed by (Raganato et al.,
2017). This includes five standard datasets, namely,
Senseval-2, Senseval-3, SemEval-2007, SemEval-
2013, and SemEval-2015. The whole datasets con-
catenating all these data with different parts of
speech (POS) are also evaluated. Note that in our
second part, We use a portion of SemEval-2007
to investigate data uncertainty and 42D is used for
model uncertainty.

4.2 Uncertainty Estimation Scores

We apply four methods as our uncertainty estima-
tion (UE) scores. One trivial baseline (Geifman and
El-Yaniv, 2017) regards the Softmax output p; as
the confidence values over classes y = s € S. We
calculate the uncertainty score based on the max-
imum probability as ump(z) = 1 — max p(y =

slz).

The other three methods are based on MC
Dropout, which has been proved theoretically as
approximate Bayesian inference in deep Gaussian
processes (Gal and Ghahramani, 2016). Specif-
ically, we conduct 7' stochastic forward passes
during inference with Dropout random masks and
obtain T probabilities p;. Following the work
(Vazhentsev et al., 2022), we use the following
measures:

* Sampled maximum probability (SMP) takes
the sample mean as the final confidence
before an MP is applied: ugyp = 1 —
mMaXeg % Zthl p;, where pj refers to the
probability of belonging to class s at the t'th
forward pass.

* Probability variance (PV) (Gal et al., 2017)
calculates the variance before averaging
over all the class probabilities: upy =

5 Yo (% S (pf — 1?)2> .

* Bayesian active learning by disagreement
(BALD) (Houlsby et al., 2011) measures the
mutual information between model param-
eters and predictive distribution: uparp =

S —_ PR
—>  pilogps + & Z;p? log p;.
S,

Note that these scores are instance-specific and
we report the averaged results over all the samples.

4.3 Maetrics on UE scores

While UE scores are a measure of uncertainty, we
also need metrics to judge and compare the qual-
ity of different UE scores. A hypothesis is that a
sample with a high uncertainty score is more likely
to be erroneous and removing such instances could
boost the performance. We employ two metrics fol-
lowing the work (Vazhentsev et al., 2022): area un-
der the risk courage curve (RCC) (El-Yaniv et al.,
2010) and reversed pair proportion (RPP) (Xin
et al., 2021). RCC calculates the cumulative sum
of loss due to misclassification according to the
uncertainty level for rejections of the predictions.



UE Score Senseval-2 Senseval-3 SemEval-07 SemEval-13 SemEval-15
RCC| RPP| | RCC|] RPP| | RCC|] RPP| | RCC| RPP|] | RCC| RPP]
MP 5.69 9.50 7.11 10.37 8.68 11.40 5.78 8.02 5.02 11.07
SMP 5.78 9.14 7.10 9.83 8.81 10.83 5.59 7.88 5.34 11.16
PV 6.11 11.47 7.50 12.40 9.93 16.00 597 10.22 5.62 13.11
BALD 6.00 11.09 7.46 11.99 9.36 14.73 5.83 10.02 5.48 12.77
Table 1: UE score comparisons on five standard WSD datasets.
UE Score NOUN VERB ADJ ADV ALL
RCC| RPP| | RCC| RPP| |RCC] RPP||RCC|] RPP||RCC] RPP|
MP 6.06 7.47 14.08  18.20 5.15 8.25 3.70 4.89 6.13 9.78
SMP 4.94 7.66 13.76 1745 4.39 8.35 2.65 4.85 6.11 9.44
PV 6.25 9.17 1538  22.02 4.97 9.37 3.20 5.33 6.48 11.91
BALD 5.18 9.39 14.42 20.96 4.59 9.80 2.66 5.56 6.36 11.52

Table 2: UE score comparisons on all the datasets with different kinds of POS.

A larger RCC indicates that uncertainty estimation
negatively impacts the classification. Note that we
use the normalized RCC by dividing the size of
the dataset. RPP counts the proportion of instances
whose uncertainty level is inconsistent with its loss
level compared to another sample. For any pair of
instances z; and x; with their UE score u(xz) and
loss value [(x):

RPP — % S 1u(w) < uz), l(z) > )], @)

1,5=1
where n is the size of the dataset.

5 Results and Analysis

In the first part, we show the quantitative results of
different UE scores and the performances of data
and model uncertainty. Then a qualitative result
demonstrates specific instances with a range of
uncertainties. This motivates us to analyze which
lexical properties mainly affect uncertainty in the
last part.

5.1 Quantitative Results

5.1.1 Which UE score is better?

We measure the four UE scores, MP, SMP, PV,
and BALD in terms of two metrics, RCC and RPP.
The results of five standard datasets are shown in
Table 1 while the performance on all the datasets
involving different parts of speech is demonstrated
in Table 2. For most of the data, SMP outperforms
the other three scores in spite of some inconsistent
results where MP has a slight advantage, such as on
SemEval-15. Interestingly enough, softmax-based
scores i.e., MP and SMP, surpass the other two,

PV and BALD. Similar results can be observed in
the work (Vazhentsev et al., 2022). This may be
due to the fact that the former scores are directly
used as the input of the maximum likelihood objec-
tive, thus more accurately approximating the real
distribution.

MP SMP
x10? x10?
1 1
6 1 s=0.93 3 1 5=0.24
1 1
1 1
4 1 2 1
1
, Ilmmnla_ 0 II_
00 02 04 06 08 1.0 00 02 04 06 08 1.0
PV BALD
x10? %102
1 1
3 - 5=0.37 3 s=0.81
1
2 2
0 .-_ 0 l-_
00 02 04 06 08 10 00 02 04 06 08 10

Figure 3: The distribution of four UE scores on mis-
classified instances of all datasets. A red dotted line
indicates the average value. We calculate the sample
skewness s for each score as well. Note that PV and
BALD scores are normalized into the range from O to 1.

To further investigate the distribution of these
four scores, we show the histograms of these scores
in the misclassified instances, as illustrated in Fig-
ure 3. We also display the averaged value (a red
dotted line) and the sample skewness s, calculated
as the Fisher-Pearson coefficient (Zwillinger and
Kokoska, 1999). Since here we focus on the mis-
classified samples, the cases of all the samples
and those correctly classified are reported in Ap-
pendix A.1. This shows that MP has a more long-



tailed and skewed distribution than scores based
on MC Dropout, indicating MP is overconfident
towards the wrong cases. However, the other three
metrics have a more balanced distribution. This ver-
ifies the common concern on the SoftMax output
of a single forward as an indication of confidence.

Finally, given its outstanding performance, we
chose SMP as our uncertainty score in the follow-
ing experiments.

5.1.2 How does the model capture data
uncertainty?

(a) Window-controlled

0.75 B E— ———— == ——— e B -
=== —e— UE_SMP

0.50 —e— UE_MP
-m- ACC_SMP

0.25 &‘ ~m- ACC_MP
0 1 2 8 12 16 20 w

window size: L

(b) Syntax-controlled

0.75 p—————— ————— WE====== o= W= -
===
"
0.50
o %
0 1 2 3 4 5

number of hops: H

Figure 4: UE scores (SMP and MP) and accuracy (F1
score) vary depending on the range of context for (a)
window-controlled setting and (b) syntax-controlled set-
ting. Note that “0” indicates that only target words
without context are available to the model. On the other
hand, “W” means the whole context is available.

We verify data uncertainty in window-controlled
and syntax-controlled scenarios, as shown in Fig-
ure 4. In the first setting, UE becomes less, and
the accuracy grows with the increase of window
size T'. This indicates that the model perceives
more and more confidence in the data, accessible
to more neighboring words. The trend is similar
in the syntax-controlled setting. These show that
the model can adequately capture data uncertainty.
SMP has a larger uncertainty than MP, especially
in a sparse context, such as L or H is equal to 0 or
1, where the model is expected to be much more
uncertain. We report the comparison of the other
two sample-based scores, PV and BALD in Ap-
pendix A.2.

5.1.3 How does the model capture model
uncertainty?

We examine the model uncertainty on the 42D
dataset in Figure 5. The result shows OOD dataset

UE_Correct
UE
UE_Wrong

0.5 ACC
0.4
0.3
0.2
1
0.0
00D

Figure 5: Uncertainty and accuracy (F1) scores for
model uncertainty (OOD) and data uncertainty (con-
trolled context) scenarios. We use window-controlled
UE with L=0 (WC w. L=0). It is evaluated in all the
data instances and wrongly (UE_Wrong) or correctly
(UE_Correct) classified instances.

0.6

UE

WC w. L=0

is indeed a challenging benchmark for WSD. How-
ever, even with worse performance, the model fails
to give a high UE score. We compare it with the
most uncertain cases but similar accuracy in the set-
tings of data uncertainty, i.e., without any context
when L = 0. The OOD setting has a lower level of
uncertainty, especially in the misclassified samples,
even if it has degraded performance. This implies
that the model underestimates the uncertainty level
in model uncertainty. We show the performance of
MP, PV, and BALD in Appendix A.3.

5.2 Qualitative Results

To investigate what kinds of words given a con-
text tend to be uncertain, we obtain the final UE
score for each word by averaging SMP scores for
instances sharing the same form of lemma. In Fig-
ure 6, We show the word clouds for words with
the most uncertain (left (a)) and certain (right (b))
meanings. We remove some unrepresented words
whose number of candidate senses is less than 3.
With respect to the most uncertain lemmas, there
are words such as settle, cover etc. Most of them
are verbs and own multiple candidate senses. As for
most certain cases, the senses of nouns like bird,
bed, and article are determined with low uncer-
tainty. These phenomena motivate us to investigate
which lexical properties affect uncertainty estima-
tion in the next part. It is noted that we concentrate
on data uncertainty instead of model uncertainty,
based on the investigation in Subsection 5.1, which
appears due to the data itself, i.e., lexical character-



istics.

(a) Most uncertain lemmas

2zcover:: ;artic le

wsettle: shedbird

appf’EClation peakerentrance “obrain farmer3

(b) Most certain lemmas

e intense

Figure 6: Word clouds for lemmas where a larger font
indicates higher (a) or lower (b) UE scores.

5.3 Effects on Uncertainty

We explore which lexical properties affect uncer-
tainty estimation from four aspects: the syntac-
tic category (Folk and Morris, 2003), morphol-
ogy (Lieber, 2004), sense granularity and seman-
tic relations (Sternefeld and Zimmermann, 2013),
motivated by linguistic and cognitive studies. Re-
garding syntactic categories, we focus on four i.e.,
parts of speech (POS) for target content words.
Morphology aims at the number of morphemes
(nMorph). A sense inventory refers to the sense
items in a dictionary, whose granularity influences
the candidate sense listing for the target word and
its sense annotation (Kilgarriff, 1997). We consider
two aspects:

e number of annotated ground-truth senses
(nGT);

* number of candidate senses, i.e., polysemy
degree (nPD);

To consider semantic interactions with other
words, we utilize WordNet (Miller et al., 1990),
a semantic network to extract lexical relations.
Specifically, we concentrate on the hyponym and
synonymy relations. A word (or sense) is a hy-
ponym of another if the first is more specific, de-
noting a subclass of the other. For example, ta-
ble is a hyponym of furniture. Each word as a
node in WordNet lies in a hyponym tree, where
the depth implies the degree of specification, de-
noted as dHypo. Meanwhile, we also explore the
size of the synonymy set (dSyno) into which the
ground-truth sense falls.

We perform linear regression analysis and con-
clude that most effects are significant as coefficients
to the UE score, except for dSyno and ADV of POS.

SHere, we mainly consider derivational morphology. Mul-
tiword expressions e.g., compound words are included as well.
Words with different inflectional morphology are regarded as
the same lemma form.

This is consistent with our result in Subection 5.3.3.
The summary of the linear regression is shown in
Appendix A.4. Afterwards, we design a controlled
procedure to analyze and balance different effects.
First, samples are drawn from all the test instances
depending on some conditions, including nGT and
POS. Afterward, we aggregate test data in one of
three manners: instance (1), lemma (L), and sense
(S) and average the UE values for the instances
with the same manner. I represents each occur-
rence of the target word, L considers words with
different inflections (e.g., works and worked), and
S targets words with the same ground-truth sense.
The sampled data is then grouped into N levels
in terms of the values for the different effects in
question. Finally, we calculate the mean UE score
for each group and their corresponding T-test and
p values. We heuristically set different choices of
N for different effects, considering the trade-off of
level granularity and sample sparsity. The p-value
is expected to be lower than 5%. The overall com-
parison is summarized in Table 3 with the number
and value range of different levels in Table 4.

5.3.1 Syntactic Category and Morphology

(a) UE Distribution
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== VERB

AD)
n=1881 ADV
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Figure 7: Averaged UE scores and numbers for in-
stances aggregated by sense, with different parts of
speech (a) and the corresponding difference significance
for each pair (b). The heatmap (b) shows the T-test val-
ues where a higher absolute value (grids with a deeper
color) indicates a more significant difference. We high-
light the grid with a corresponding p value larger than
5%, implying no significant difference.

We show the averaged UE scores for instances
with different POS and their corresponding T-test
value in Figure 7. Except for the NOUN-ADIJ pair,
verbal instances are more significantly uncertain
than NOUN or ADJ, while ADV has the least un-
certainty. The result implies the senses of verbs
are generally harder to determine than other cate-
gories, consistent with previous work (Barba et al.,
2021; Campolungo et al., 2022). This is reflected
in Table 2 and Figure 6.



. Uncertainty Estimation Difference Significance
Effect Condition Agg | 11 o 13 |Llel2 LioL3 L2<L3
nGT=1, POS=NOUN 0.13 0.11  0.07 1.44e-2  1.35¢-8 5e-4
Mooy | NGT=1,POS=VERB | 022 0.19 0.3 7.6le2  6.0d4e-4  6.6e-2
O GT=1, POS=AD]J 011 008  0.10 3.6e2  42le-1  4.40e-1
nGT=1, POS=ADV 0.11 006 0.2 7.6e2  6.0de-4  6.60e-2

nGT ; 1 012 022 ; 1.61e-22 - ;
nPD nGT=1 L | 004 016 022 | 62296 3.42e-135 5.01e-10
dHypo | nGT=1,POS=NOUN L |0.14 0.12  0.09 1.43e-2  1.91e-6 6e-3
dSyno nGT=1 S 014 014 0.14 5.55 5.38 5.67

Table 3: Different uncertainty estimations (SMP) for different levels and corresponding difference significance
(p values) of various effects involving morphology, inventory organization and semantic relations. Agg. means
aggregation manners of the lemma (L), instance (I), and sense (S).

Effect | L1 L2 L3
number 514 603 397
nMorph (N) | “oe | 0,1.67] (1.67.2]  (2.9]
number 200 313 132
nMorph (V) | “inee | 020 1221 (2.6
number 136 201 69
nMorph (A) | “nge | ©,1.30] (1302]  (2.6]
number 25 85 36
nMorph D) | "o | 021 221 (261
number 6913 340 -
nGT range 1 >1 -
WPD number 1145 963 463
range 0,2] (2,6] (6,50]
dHvoo number 729 666 340
yp range (1,6] (6,9] (9,43]
dSvno number 1109 1407 763
y range (0,1] (1,3] (3,28]

Table 4: The number and range of effects quantified into
different levels for various effects.

We further explore the effects of morphology
in Table 3. After extracting morphemes for each
word using an off-line tool *, we count the num-
ber of morphemes (denoted as nMorph). Since
words with different parts of speech may have dis-
tinct mechanisms of word formation rules, we split
data according to POS before averaging their UE
scores and calculating corresponding difference
significance. It shows that generally, the more mor-
phemes a word consists of, the more uncertain its
semantics would be. This is expected from the per-
spective of derivational morphology since adding
prefixes, or suffixes could specify the stem words
and have a relatively predictable meaning. For ex-
ample, “V-ation” indicates the action or process

4https ://polyglot.readthedocs.io/en/latest

of the stem verb, e.g., education, memorization.
According to T-test in Table 3, UE scores of dif-
ferent levels for nouns are significantly distinct,
while the difference is not so significant for other
categories. It is because the derivational nouns in-
cluding compound words are more representative
and productive than other categories. This can be
demonstrated by the fact that nouns contain the
highest number of morphemes as shown in Table 4.

5.3.2 Sense Granularity

We first consider the number of ground-truth senses,
i.e., nGT. During the annotation process, a not in-
significant 5% of the target words is labeled mul-
tiple senses (Conia and Navigli, 2021). This re-
flects the difficulty in choosing the most appropri-
ate meaning, even for human annotators. Given
their contexts, the semantics of these words are
expected to be more uncertain, and our result is
consistent with this fact. We control nGT to be 1 in
the remaining evaluation to eliminate its influence.

Second, we study the effect of polysemy degree
(the number of possible candidates), i.e., nPD. It
shows that target words with a more significant
polysemy degree tend to be more uncertain. It
is intuitively understandable because words with
more possible meanings are always commonplace
and easily prone to semantic change, e.g., go, play.
Furthermore, their sense descriptions in WordNet
are more fine-grained, indistinguishable in some
cases even for humans. However, words with less
polysemy degrees, such as compound words, are
more certain in various contexts.



5.3.3 Semantic relation

We discuss the effects of semantic relations for the
target word in terms of WordNet. We first consider
the hyponym relations, i.e., the depth in which a
word node lies in the hyponym relation tree, as
denoted by dHypo. Since nouns have clearer in-
stances of hyponymy relation, we only consider
this category. The results displayed in Table 3
show that instances with a deeper hyponym tend to
own a certain meaning and the difference between
each pair of levels is significant. That indicates that
more specific concepts have a more determinate
disambiguation, which is intuitive.

Another semantic relation is synonymy, as rep-
resented by dSyno. The measurement reveals that
instances among different levels of the number of
synonyms do not differ from each other signifi-
cantly. This implies that whether the ground-truth
meaning has more neighbors with similar seman-
tics has less impact on the decision of uncertainty.

6 Conclusion

We explore the uncertainty estimation for WSD.
First, we compare various uncertainty scores. Then
we choose SMP as the uncertainty indicator and
examine to what extent a SOTA model captures
data uncertainty and model uncertainty. Experi-
ments demonstrate that the model estimates data
uncertainty adequately but underestimates model
uncertainty. We further explore effects that influ-
ence uncertainty estimation in the perspectives of
morphology, inventory organization and semantic
relations. We will integrate WSD with uncertainty
estimation into downstream applications in the fu-
ture.

7 Limitations

Despite being easily adapted to current deep learn-
ing architectures, one concern about multiple-
forward sampling methods is efficiency, since it
has to repeat 1" processes to evaluate uncertainty in
the stage of inference. We leave efficient variants
of sampling methods for future work.

Another glaring issue is the focus on only En-
glish. Different languages may have different ef-
fects on uncertainty estimation due to e.g., distinct
forms of morphology. Thus, some conclusions may
vary according to the language in question. We
hope that follow-up works will refine and comple-
ment our insights on a more representative sample
of natural languages.

8 [Ethics Statement

We do not foresee any immediate negative ethical
consequences of our research.

9 Broader Impact Statement

Knowing what we do not know, i.e., a well-
calibrated uncertainty estimation, is fundamental
for an Al-assisted application in the real world. In
the area of word sense disambiguation, the ambigu-
ity and vagueness inherent in lexical semantics re-
quire a model to represent and measure uncertainty
effectively. Our work explores the combination of
these two areas and hopes that it will provide an
approach to understanding the characteristics of
languages.
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A Appendix

A.1 Distribution of UE scores

We illustrate the distribution of UE scores, i.e., MP,
SMP, PV and BALD for all the test samples in
Figure 8 and samples that are correctly predicted
in Figure 9. We assume samples that the model
could accurately predict are easy and thus have a
more certain meaning. Although SMP is not so
long-tailed as MP in the case of correctly predicted
samples, we do not expect a metric “overconfident”
in all the cases, especially in the misclassified in-
stances.
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Figure 8: The distribution of four UE scores on all the
test samples. The averaged value is indicated by a red
dotted line. We calculate the sample skewness for each
score as well.
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Figure 9: UE distribution on well-classified samples.

A.2 Other Scores for Data Uncertainty

We display the other two sample-based scores PV
and BALD, in comparison with SMP in two data
uncertainty scenarios in Figure 10. SMP has a

higher uncertain score than the other two, espe-
cially in the more sparse context (e.g., L = 0), as
we expected.

(a) Window-controlled

—e— UE_SMP
—m— UE_PV
—+— UE_BALD
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(b) Syntax-controlled
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Figure 10: UE scores (SMP, PV, and BALD) vary
depending on the range of context for (a) window-
controlled setting and (b) syntax-controlled setting.

A.3 Other Scores for Model Uncertainty

We illustrate the other three UE scores (MP, PV and
BALD) and accuracy for the scenario of model un-
certainty compared with the least uncertain case for
data uncertainty (L=0) in Figure 11, Figure 12 and
Figure 13, respectively. The conclusion that UE
scores underestimate model uncertainty is similar
to that of MP.
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Figure 11: Uncertainty (MP) and accuracy scores for
model uncertainty (OOD) and data uncertainty (con-
trolled context) scenarios. We use window-controlled
UE with L=0 (WC w. L=0). It is evaluated in all the
data instances and wrongly (UE_Wrong) or correctly
(UE_Correct) classified instances.
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Figure 12: Uncertainty (PV) and accuracy scores for
model uncertainty (OOD) and data uncertainty (con-
trolled context) scenarios.
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Figure 13: Uncertainty (BALD) and accuracy scores
for model uncertainty (OOD) and data uncertainty (con-
trolled context) scenarios.
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A.4 Linear Regression Analysis

Figure 14 reports all the effects and corresponding
coefficients and p-values of the linear regression
model described in Subsection 5.3.

Residuals:
Min 1Q Median 3Q Max
-0.58641 -0.10545 -0.06753 0.09504 0.53066

Coefficients:
Estimate Std. Error t value Pr(>Itl)
(Intercept) ©0.0083035 0.0170900 ©0.486 ©.62709

POSADV -0.0175029 0.0142610 -1.227 0.21978
POSNOUN 0.0332515 0.0116023 2.866 ©.00418 **
POSVERB 0.0687057 0.0098485 6.976 3.6le-12 ***
nMorph -0.0115582 0.0035480 -3.258 0.00113 **
nGT 0.0843417 ©0.0120718  6.987 3.35e-12 ***
nPD 0.0086235 ©0.0004789 18.006 < 2e-16 ***
dHypo -0.0021911 0.0011069 -1.979 0.04785 *
dSyno -0.0012973 0.0014049 -0.923 0.35585

Signif. codes: @ '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: ©.1648 on 3511 degrees of freedom

Multiple R-squared: 0.175, Adjusted R-squared: 0.1731
F-statistic: 93.1 on 8 and 3511 DF, p-value: < 2.2e-16

Figure 14: Linear regression model predicting the UE
score (SMP) by various effects.
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