

A Top-down Graph-based Tool for Modeling Classical Semantic Maps: A Crosslinguistic Case Study of Supplementary Adverbs

Zhu Liu, Cunliang Kong, Ying Liu, Maosong Sun Tsinghua University liuzhu22@mails.tsinghua.edu.cn 30 Mar, 2025

Background

- What is a semantic map?
 - to visually represent the interrelationships between meanings
 - by capturing the form-meaning mappings shared across multiple languages.
 - form-meaning mappings: one-to-many relationships
 - Content words: polysemy, e.g., *head* can mean a *human body part* and a *leading role*
 - Function words or affixes: multifunctionality, e.g., to expresses purpose and direction
 - more straightforward than descriptions written by human languages

Background

- How to construct a semantic map?
 - Nodes: meanings, concepts, senses or functions
 - Edges: the strenghth of association between nodes
 - Linguistic forms, e.g, content or function words, affixes, constructions
 - Form-Function Table: shows which meanings a given form can express
 - Structure Constraint: connectivity hypothesis (H1)
 - All meaning nodes associated with the same form must be connected.
 - (Bottom-up approach) to build a map that satisfies H1 case by case.
 - Less cyclic subgraphs: prevents overgeneralization and ensures predictive power

Example

- Domain: External-possession construction
- Form-function pair
 - English: Goethe went <u>to</u> Vienna as a student. (direction) This seems outrageous <u>to</u> me. (experiencer) ...
 - French: dative case; Spanish, Basque, etc

Haspelmath M. External possession in a European areal perspective[J]. Typological studies in language, 1999, 39: 109-136.

Motivation

- Bottom-up construction on semantic maps has several drawbacks
 - Time-consuming and difficult to scale on a larger dataset
 - Manual efforts to choose between equally plasusibe connections
 - Rollback issues, as adding new connections may require revisiting earlier ones
 - Expanding the dataset to include more languages, forms, and functions may offer new insights.
 - Fail to indicate the strength of associations between two functions
 - classical vs. next-generation maps
 - · classical one is more straightforward with less connections
 - Next-generation maps aim for richer representation by connecting nodes as much as
 possible and using numerical values to indicate the strength of associations.

Contributions

- We propose a **top-down algorithm** to automatically generate classical semantic maps.
- We design a set of **metrics** to evaluate the quality of the resulting networks.
- A case study on supplementary adverbs demonstrates the efficiency and effectiveness of our proposed method.
- We develop a visualization tool based on this approach to assist typological linguists in studying multifunctionality across languages conveniently

From Local to Global

- Local connectivity hypothesis H1
 - The meaning nodes associated with a single form must be connected.
- Global hypothesis H2
 - Start with a complete graph weighted by the number of bifunctional co-occurrences.
 - The final map is a maximum spanning tree of this graph
 - Overall connectivity
 - Acylicity
 - Maximum total edge weights

Metrics

• Intrinsic Metrics

- Size: Summed weights of edges
- Recall: The proportion of cases satisfying H1 out of all cases
- Precision: The proportion of cases satisfying H1 among all possible cases generated by the graph.
- Standard deviation of degrees: prefers a chain-like typology with less edges

Metrics

Intrinsic Metrics

- Size: Summed weights of edges
- Recall: The proportion of cases satisfying H1 out of all cases
- Precision: The proportion of cases satisfying H1 among all possible cases generated by the graph.
- Standard deviation of degrees: prefers a chain-like typology with less edges
- Extrinsic Metrics
 - Accuracy: The proportion of matches compared to the reference.

Evaluation

- A Case study on: Supplementary Adverbs
- 9 languages, 28 grammatical forms and 18 functions
- The form-function table has been created by linguists in a bottom-up fashion.
- The golden map (GT) serves as a reference standard
- Two baselines
 - C: a complete graph
 - LT: a lower-bound one with a "bad" tree that does not overlap with GT

Form-function table

L	G	AF	SU	RE	CO	GD	DE	IS	CD	DC	РТ	SC	WH	SE	SC	IC	UE	BL	DS
ZH	还又也在	0 0 1 0	1 1 1 1	1 1 0 1	1 0 0 1	1 0 0 1	1 0 0 0	1 1 0 1	1 0 1 0	1 0 1 0	1 0 1 0	0 0 1 0	0 0 0 1	0 0 0 1	0 0 1 0	0 1 0 0	1 0 0 0	1 0 1 0	0 1 0 0
во	ra	1	1	0	0	0	0	0	1	0	1	1	0	0	0	0	0	0	0
	tarong	0	0	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0	1
EN	also	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	too	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	again	0	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
	still	0	0	0	1	1	1	0	1	1	0	0	0	0	0	0	0	1	0
DE	auch	1	1	0	0	0	0	0	1	0	1	1	0	0	1	0	0	0	0
	noch	0	1	1	1	1	1	0	1	1	0	0	1	0	0	0	1	1	0
FR	aussi	1	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	encore	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
RU	tbzhe	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
	opyat	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
JA	も	1	1	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0
	また	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	なお	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
КО	도 더 또 다시 아직	1 0 0 0 0	1 0 1 0 0	0 0 1 1 0	0 0 0 1	0 1 0 0 0	0 0 0 1	0 0 0 1 0	1 0 0 0 0	1 0 0 0 0	1 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 1 0 0	0 0 0 0 0	0 0 0 0 0	0 0 1 0 0
VI	cũng	1	0	0	0	0	0	0	1	1	1	0	0	0	0	0	1	1	0
	nữa	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	còn	0	0	1	1	1	0	0	1	0	1	0	0	0	0	0	0	0	0
	lại	0	1	1	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0

Abbr	Full
AF	Additive Focus
SU	Supplement
RE	Repetition
CO	Continuation
GD	Greater Degree
DE	Decrement
CD	Condition
DC	Discretional Condition
PT	Polarity Trigger
SC	Serious Condition
WH	Whatever
SE	Sequence
SD	Sequential Coordinator
IC	Inconsistency
UE	Unexpectedness
BL	Bottom Line
DS	Discourse Continuation

NAACL 2025

5/25/2025

Index

C

Size[↑]

286

13

Bảng 7: Evaluation of our generated graphs and baselines (denoted as complete graph C and ground truth GT). The index represents the first N maximum spanning trees, scaled by 10,000.

LT 79.0 GT 91 1 0.20 0.17 90 85.7 92.6 0 89 82.1 0.21 91.4 82.1 2 89 0.44 90.1 3 88 82.1 0.34 91.4 88 78.6 0.50 88.9 4

Recall↑

Precision[↑]

0

Accuracy[↑]

50.0

- The map generated by our method is highly accurate with a high recall.
- We can generate many candidate maps, which can be reviewed and refined by experts

Evaluation

5/25/2025

Index

Size[↑]

Evaluation

- The map generated by our method is highly accurate with a high recall.
- We can generate many candidate maps, which can be reviewed and refined by experts

	1.000000000-000000000000000000000000000		and the set of the set	1000 (1000) (1000) (1000) (1000) 2 00 1 0
С	286	1	0	50.0
LT	-	· —	-	79.0
GT	91	1	0.20	1
0	90	85.7	0.17	92.6
1	89	82.1	0.21	91.4
2	89	82.1	0.44	90.1
3	88	82.1	0.34	91.4
4	88	78.6	0.50	88.9

Precision[↑]

Accuracv[↑]

Recall↑

Bảng 7: Evaluation of our generated graphs and baselines (denoted as complete graph C and ground truth GT). The index represents the first N maximum spanning trees, scaled by 10,000.

5/25/2025

15

Bång 7: Evaluation of our generated graphs and baselines (denoted as complete graph C and ground truth GT). The index represents the first N maximum spanning trees, scaled by 10,000.

The map gen is highly accu

- We can gene maps, which refined by exp
- Even with the lower bound of a tree • structure, the accuracy remains strong, highlighting the importance of the tree typology.

	much	SILC	
erated by our method	C	286	
urate with a high recall.	LT		
rate many candidate	GT	91	
can be reviewed and	0	90	
nerts	1	89	
	2	89	

Index	Size↑	Recall↑	Precision [↑]	Accuracy↑
С	286	1	0	50.0
LT	-8	-	. 	79.0
GT	91	1	0.20	1
0	90	85.7	0.17	92.6
1	89	82.1	0.21	91.4
2	89	82.1	0.44	90.1
3	88	82.1	0.34	91.4
4	88	78.6	0.50	88.9

Evaluation

- The map generated by our method is highly accurate with a high recall.
- We can generate many candidate maps, which can be reviewed and refined by experts
- Even with the lower bound of a tree structure, the accuracy remains strong, highlighting the importance of the tree typology.
- Our proposed metric shows a moderate negative correlation, indicating its effectiveness in evaluating the map's structure.

Round	RG_1	RG_2
1	-17.8	-22.1
2	-21.9	-22.4
3	-20.5	-19.2
4	-23.8	-21.7
5	-23.1	-24.1
Mean	-21.4	-21.9
Std. Dev.	2.13	1.58

Table 8: Pearson correlation between Div_D (diversity of degrees) and accuracy across five rounds. The mean and standard deviation for each round are also provided.

- We can generate comparable semantic maps to experts
- The failure cases mainly caused by the acyclic constraints
- Our edges effectively represent the degree of association between nodes.

- A top-down approach to build classical semantic model maps
- Metrics to evaluate the map automatically
- A visualization tool for linguistics

- (Ying Zhang. 2017) Semantic map approach to universals of conceptual correlations: a study on multifunctional repetitive grams. Lingua Sinica, 3(1):7.
- (William Croft. 2001). Radical Construction Grammar:Syntactic Theory in Typological Perspective. Oxford University Press, Oxford.
- (Martin Haspelmath. 2003.) The geometry of grammatical meaning: Semantic maps and cross-linguistic comparison. In Michael Tomasello, editor, The new psychology of language, volume 2, pages 211–243. Lawrence Erlbaum, Mahwah, NJ.
- Cysouw, Michael(2007a). Building Semantic Maps: the Case of Person Marking. In: Matti Miestamo & Bernhard Wälchli (eds)., New Challenges in typology: Broadening the horizons and redefining the foundations. Berlin: Mouton, P225-248.

Thank you for your attention!

Paper

Code

Personal Website

