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Abstract

Modern neural networks (NNs), trained on
extensive raw sentence data, construct dis-
tributed representations by compressing in-
dividual words into dense, continuous, high-
dimensional vectors. These representations are
expected to capture multi-level lexical mean-
ing. In this thesis, our objective is to examine
the efficacy of distributed representations from
NNs in encoding lexical meaning. Initially, we
identify and formalize three levels of lexical se-
mantics: local, global, and mixed levels. Then,
for each level, we evaluate language models by
collecting or constructing multilingual datasets,
leveraging various language models, and em-
ploying linguistic analysis theories. This thesis
builds a bridge between computational models
and lexical semantics, aiming to complement
each other.

1 Introduction

A key issue in lexical semantics is the many-to-
many The relation between form and meaning is
multifaceted. One form can encompass multiple
senses, such as in cases of homonymy and poly-
semy. Conversely, one meaning can correspond to
multiple forms, e.g., synonymy. Together, these
phenomena organize a lexicon into a semantic
field (Jackson and Amvela, 2000) with varying
levels (Li€tard et al., 2024). From a local perspec-
tive, each word possesses potential meanings influ-
enced by different contexts. These meanings may
be unrelated (homonymy) or related, with varying
degrees of relatedness. At a global level, words
are interconnected through relationships such as
word analogy (man — woman = king — queen) and
compositionality (ltaly + noodles = spaghetti).
At a mixed level, we can conceive an overarch-
ing conceptual space that captures cross-lingual
universality, integrating both words and their local
meanings.

Modern computational language models based
on transformer architectures (Vaswani et al., 2017)

represent a word I as a real-valued, contextual,
high-dimensional vector (Petersen and Potts, 2023)
(or representation). This approach is grounded in
the distributional hypothesis (Harris, 1954), which
posits that words appearing in similar contexts have
similar meanings. Vectors from pre-trained lan-
guage models (PLMs) and large language mod-
els (LLMs) have been utilized as initial inputs
for downstream tasks related to lexical semantics,
achieving outstanding performance in areas such
as word sense disambiguation (Bevilacqua et al.,
2021), lexicon induction (Li et al., 2023), and re-
verse dictionary tasks (Tian et al., 2024). Natural
and important questions arise: how well do these
distributed representations from PLMs and LL.Ms
convey contextual meaning? Do they truly pos-
sess the same lexical knowledge as humans, given
their impressive linguistic performance? If not, to
what extent do they fall short? Answering these
questions is significant for both the computational
and linguistic communities. For computational re-
searchers, these insights could enhance the trans-
parency and reliability of black-box models. For
linguists, they could aid in constructing meaning
systems and discovering novel meanings.

This thesis explores these research questions
by evaluating current pre-trained language models
(PLMs) and large language models (LLMs) on a
variety of lexical meaning tasks with differing lev-
els of granularity. To incorporate a cross-lingual
perspective, we design benchmarks spanning mul-
tiple languages. Furthermore, we test our hypothe-
ses by integrating theories and models from both
computational linguistics and traditional linguistic
frameworks.

Research Proposal In this thesis, we first formal-
ize our research problems, including key concepts
and the three levels of analysis (see Section 2).

IThe actual representation for a model corresponds to a

token, i.e., subword. We can represent a word by aggregating
the contextual embeddings from subwords in practice.



Next, we collect datasets and design experiments
to evaluate each aspect (see Section 3). Finally, we
address potential methodological challenges and
present the conclusions drawn from our findings
(see Section 4).

2 Formalization

2.1 Basic Notions

We consider a lexicon W consisting of a finite and
countable set of items. These items include all
lemmatized words w; € W, each associated with
a prototypical meaning m(w;). This prototypical
meaning represents the most frequent and typical
sense recognized by speakers of a given language
community (Rosch, 1975), and is typically listed
first in a dictionary. For instance, the prototypical
meaning of My, refers to a financial institution,
rather than the side of a river or a shape of fog.
These prototypical meanings form a meaning space
M.

Words are then sampled and combined into se-
quences, forming a corpus R, consisting of sen-
tences s;. For a word wj, its occurrence o(w;) is re-
alized as a sentence s; within the corpus ‘R, where
w} represents a conjugated form of w;, such as the
addition of inflectional morphemes”. The word w;
in its context s; carries a conventional meaning,
referred to as its sense e(w),), which is typically
listed in other dictionary entries, distinct from the
prototypical meaning m(w;). These senses, across
lexical items, constitute a conceptual field C, where
each concept represents a distinct type of mean-
ing. Thus, a concept is the minimal unit through
which we understand the world. There are several
examples of the combination of W, R, and C.

Example 1 A common dictionary for learners,
such as the Oxford Dictionary 3, includes words w
with their associated meanings m, and sentences
derived from a corpus R. While the entire concep-
tual space is implicit, it is suggested through sets
of synonyms.

Example 2 WordNet (Miller et al., 1990) con-
tains words, their meanings, and sentences, similar
to a conventional dictionary. Additionally, synsets
in WordNet, as nodes, explicitly represent a con-
ceptual space by grouping synonymous words.

This process occurs in the surface structure derived from
the deep structure, according to generative grammar (Chom-
sky, 1965).

*https://en.oxforddictionaries.com/
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Figure 1: Graph models for four spaces: lexicon W, cor-
pus R, concept C, and prototypical meaning M. The
three levels and their respective scopes are identified.
The shaded circle represents an observable variable,
while the unshaded one indicates an unobservable vari-
able.

Example 3 The mental lexicon (Klepousniotou,
2002) is inherently present in our minds. Words
in the vocabulary are learned incrementally from
fragments of utterances in R. The conceptual space
helps us recognize equivalent concepts and facili-
tate categorization.

2.2 Three Levels

We propose a graphical model to illustrate the re-
lationships among four spaces: W, M, R, and C,
as shown in Figure 1. Further examples are pro-
vided in Figure 2. Based on these, we identify three
hierarchical levels.

Local Level This level focuses on the sense
space within a word, addressing issues such as
the number of senses, how senses are divided
and evolve, the similarity and relatedness of po-
tential senses, as well as conventional or tempo-
ral meanings. Tasks like word sense disambigua-
tion (Navigli, 2009), word sense induction (Van de
Cruys and Apidianaki, 2011), and lexical seman-
tic changes (Schlechtweg, 2023) reflect the local
space of a word. We formalize this level using the
following likelihood probability:

p(e) :p(e|w,s), (1

where w € W, s € R,and e € C.


https://en.oxforddictionaries.com/

Global Level From another perspective, we con-
sider all the words in a lexicon and examine their
semantic relationships. Since no specific context
is provided at this level, we focus solely on the
prototypical meaning of words. Relations among
words include word analogy (Mikolov et al., 2013),
word similarity (Huang et al., 2012), composition-
ality (Yamagiwa et al., 2023), and others. Struc-
tures such as vectors and graphs are commonly
used to represent these relationships. We formalize
this level using the following likelihood probability:

p(M) = p([ei]n|WV), (2)
where N is the number of words in the lexicon, and
[ei}N = {61,62,...,6,’,.. . ,eN}.

Mixed Level The mixed level considers the
senses across all words in the lexicon. A semantic
field can form a set of concepts shared within a
language community. Building on the local level,
problems such as concept induction and the sim-
ilarity of concepts are classical challenges at this
level. A conceptual space (Haspelmath, 2003)
that discovers relations among concepts, often in
a cross-lingual context, represents the structure of
concepts. The process at the mixed level can be
realized in two steps: first, local-level sense in-
duction, followed by global concept induction. We
formalize this level using the following likelihood
probability:

p(C) = p([ci]mW, R) = p(e|w, 5) - p([ci]mle, W), (3)
where M is the number of concepts, and [¢;]y; =
{c1,¢9,. .. ¢iy . enr )

In this paper, we evaluate to what extent dis-
tributed representations convey lexical semantics
at these three levels. At the local level (Subsec-
tion 3.2), we focus on the phenomenon of continu-
ous relatedness of senses and investigate whether
language models can reflect the continuous varia-
tion in different senses. At the global level (Subsec-
tion 3.3), we construct a network of word embed-
dings learned by large language models and analyze
their geometric relations among different words.
For the mixed level (Section 3.4), we build concep-
tual spaces from a subset of the lexicon based on
typological theories in language.

3 Evaluation

We begin by utilizing various types of language
models to extract representations, followed by an
evaluation of these representations across the three
levels.
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Figure 2: Examples of the four spaces: lexicon W,
corpus R, concept C, and prototypical meaning M.

3.1 Models and Representations

Drawing on the Distributional Hypothesis (Harris,
1954), language models employ neural networks to
derive continuous vectors from large-scale corpora.
Models such as Word2Vec (Mikolov et al., 2013)
and GloVe (Pennington et al., 2014) generate static
word representations that do not account for the
different senses a word may take in varying con-
texts. In contrast, transformer-based models (Ken-
ton and Toutanova, 2019) acquire layer-wise con-
textual representations. Both static and contextual
representations leverage the distribution of neigh-
boring words but do not explicitly model mean-
ing in a nuanced manner. Some studies, however,
aim to build sense representations in an unsuper-
vised (Liu et al., 2015) or knowledge-based (Chen
et al., 2014) fashion.

To evaluate the representations from these mod-
els, we consider different configurations, includ-
ing BERT-like bidirectional models (primarily
used in pre-trained language models, PLMs) and
GPT-like generative models (commonly employed
in large language models, LLMs). We propose
to investigate how LLMs encode lexical seman-
tics (BehnamGhader et al., 2024; Liu et al., 2024)
in comparison to the more established research on
BERT (BERTology (Rogers et al., 2021)). Specif-
ically, we aim to identify where lexical semantics
are encoded within the model, which will guide
how we extract vectors for further evaluation.



Additionally, we propose transforming the origi-
nal semantic space into a more discrete form to de-
couple interdependent features. Techniques such as
independent component analysis (Yamagiwa et al.,
2023) can be employed for this purpose. By ana-
lyzing the values of the transformed feature axes,
we seek to identify meaningful dimensions of se-
mantics that better capture the underlying structure
of lexical meaning.

3.2 Local Level: Sense Continuity

At the local level, we focus on the distribution
of possible senses for words. A well-known phe-
nomenon in lexical semantics is the continuity of
sense distinctions. That is, the relatedness of senses
for different words varies continuously. Linguists
distinguish between homonymy and polysemy, for
example. However, even within polysemy, the dis-
tance between senses for some words in different
contexts can vary. Furthermore, variations in se-
mantic roles for words within the same context
can also differ. These challenges are reflected in
the high annotator disagreement found in lexical
semantics-related tasks, such as word sense disam-
biguation (WSD) (Navigli, 2009).

Uncertainty in WSD  Existing supervised meth-
ods (Bevilacqua et al., 2021) treat WSD as a clas-
sification task and have achieved remarkable per-
formance. However, they often overlook uncer-
tainty estimation (UE) in real-world settings, where
sense labeling involves substantial disagreement
and varying degrees of uncertainty for different
words (Liu and Liu, 2023). We propose address-
ing this issue by formalizing it as a probabilistic
inference problem (Gal et al., 2016), which outputs
a well-calibrated probability distribution over the
candidate sense space.

Incorporating uncertainty estimation also helps
differentiate between homonymy and polysemy.
Homonymy tends to exhibit higher certainty in its
sense labeling, whereas polysemy is often char-
acterized by greater uncertainty. This perspective
aligns with the inherent subjectivity of language,
which includes phenomena such as underspecifi-
cation, vagueness, and context sensitivity (Sennet,
2023).

Semantic Roles In a basic SVO sentence struc-
ture based on predicate-argument relationships, the
degree of semantic roles assigned to different gram-
matical constituents (S, V, and O) can vary. This

phenomenon is linguistically universal. For in-
stance, the verb shot at in the sentence The hunter
shot at the bear exhibits weaker transitivity than
shot in The hunter shot the bear. In Chinese, word
order plays a significant role in determining se-
mantic roles; typically, the first argument is the
agent, and the second is the patient. Changing the
subject and object order can alter the agency and
objectivity, although in some cases, the semantic
roles remain unchanged. For example, 5K =#7
ZEPY  (Tom hit Alice) is fundamentally different
from ZEPU¥T5K= (Alice hit Tom). However,
I AIZ—Tillift (Ten people eat a meal) essentially
carries the same meaning as — ¥R IZ 11~ A
(A meal provides ten people to eat). In the former
case, the verb hit has the same transitivity in both
contexts, while eat does not. We propose collecting
minimal pairs (where only the subject and object
change) that represent different shifts in semantic
roles and investigating whether language models
can capture such nuances. The forms of minimal
pairs may vary across different languages because
distinct languages may employ different strategies,
such as morphological or syntactic variations, to
reflect changes in semantic roles. We emphasize
that the form of the minimal pair is specific to each
language, as languages may have distinct ways of
modifying the degree of semantic roles.

This work is related to the classical NLP task of
semantic role labeling (Jurafsky and Martin, 2020),
but with several key differences. First, we treat
the degree of semantic roles as a continuous vari-
able, rather than a binary choice. Thus, we utilize
representations to calculate the similarity between
corresponding items. Second, we collect minimal
pairs where only one factor changes, such as the
transitivity of verbs, to facilitate causal analysis.
Finally, we consider cross-lingual universality and
compare the behavior of semantic role assignment
across different languages.

3.3 Global Level: Word Network

At the global level, we propose constructing a word
network by leveraging the embeddings learned in
large language models (LLMs). In this network,
nodes represent words, and edges reflect the simi-
larity between corresponding words. This structure
illustrates how the internal representations of mod-
els capture the relationships among words. We
also aim to compare networks built using mod-
els of varying scales. Several factors need to be



addressed. First, how should we extract the repre-
sentation of a word from raw token embeddings?
Does the conventional mean-pooling approach re-
main effective? Second, what similarity mea-
sure should be employed? While cosine similarity
is commonly used, it may not suffice in higher-
dimensional spaces. Third, how should we prune
a fully connected graph, particularly when com-
paring different models? What constitutes a fair
strategy for pruning across different model types?
Finally, how can we design effective indicators to
zoom in and out of the network? When zoom-
ing in (Li et al., 2024), we can observe detailed
examples such as meaning analogies (e.g., man-
king-woman-queen). Conversely, zooming out al-
lows us to characterize the entire network through
graph statistics, such as the number of connected
components.

3.4 Mixed Level: Conceptual Spaces

At the mixed level, we consider the senses across
words and construct a conceptual space that re-
flects the similarity of concepts. Given the cross-
lingual universality of concepts, we adopt the the-
ory of language typology, specifically semantic
map modeling (Haspelmath, 2003) (SMM), where
a conceptual space is built based on a connectivity
hypothesis.

Function words, affixes, and certain adverbs play
a crucial role in SMM due to their multifunction-
ality. They exhibit a broader range of nuanced
semantics or functions compared to content words
and are often not exhaustively listed in dictionaries.
For example, repetitive grams (such as "and" or
"again") in various languages can demonstrate over
20 distinct functions (Zhang, 2017). Linguists use
Semantic Map Models (SMM) (Haspelmath, 2003)
to visually represent these functions within a con-
ceptual or semantic space, interconnected by lines
to form a network. Functions with greater similar-
ity are positioned closer together on the map. SMM
is grounded in cross-linguistic comparison, follow-
ing the "semantic connectivity hypothesis," which
suggests that functions expressed by a language-
specific category should occupy contiguous areas
on the semantic map.

In our approach, we utilize representations from
language models to measure the similarity between
different occurrences of a target word. Subse-
quently, we design a graph algorithm to construct
the semantic map, adhering to the connectivity

principle. We aim to assess the quality of the
automatically generated graph against a human-
annotated one using designated metrics. -

4 Conclusion and Challenges

Distributed representations encode rich lexical se-
mantics, capturing not only word meanings but
also contextual associations, allowing for a nuanced
understanding of language. This thesis evaluates
the extent to which vectorized representations re-
flect word meaning across three levels: the local
level (word-relatedness), the global level (multilin-
gual lexicon relations), and the mixed level (cross-
lingual conceptual space). These levels offer both
micro and macro perspectives of semantic fields,
providing a comprehensive framework for evaluat-
ing lexical semantics. By considering these multi-
ple levels, we aim to better understand how models
capture the complexity of language. We propose
evaluating model representations using common
benchmarks and custom datasets, with performance
serving as an indicator of semantic quality and the
ability to reflect the depth of meaning encoded in
these representations.

However, several challenges arise in this probing
approach. The first is the “extraction dilemma”:
can poor task performance be attributed to a
model’s failure to capture semantics, or does it
result from suboptimal representation extraction
strategies? Without isolating other factors, we can-
not conclusively assess the semantic capacity of the
representations. The second issue is probe selectiv-
ity (Hewitt and Liang, 2019), where it’s unclear if
the probe extracts representations or simply learns
the task. The third challenge is dataset bias, as
contextual meanings are often more subjective than
static meanings. Disagreements among human an-
notators on tasks like polysemy disambiguation can
introduce uncertainty, affecting metric design and
reliability.

Lastly, while scaling laws (Kaplan et al., 2020)
show that larger models improve performance, they
also increase opacity, raising questions about model
interpretability and trustworthiness. How do these
models arrive at their conclusions? Can we explain
their predictions in a way that is meaningful to
humans? Our research aims to enhance the trans-
parency of modern language models and bridge the
gap between computer science and linguistics, fos-
tering a better understanding of how these models
represent linguistic information.
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