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Lexical ambiguity—manifested as polysemy, homonymy, and multifunctionality—is a uni-
versal linguistic phenomenon that humans effortlessly resolve through contextual cues. This
review investigates how language models (LMs), as mathematical, brain-inspired systems, rep-
resent and comprehend such ambiguity, given their remarkable performance in language tasks.
We synthesize existing research from two complementary perspectives: externally, by evaluating
LMs on word-sense disambiguation and related tasks; and internally, by examining the inter-
pretability of their hidden representations across different model architectures. The synthesis
concludes that while language models are generally effective at capturing lexical semantics,
decoder-only large language models (LLMs) exhibit unique characteristics and limitations,
offering a consolidated overview for future research.

1. Introduction

A linguistic form—ranging from a morpheme or word to a phrase, sentence, or even
an entire discourse—can be associated with multiple meanings. The specific meaning
is modulated by its surrounding context, whether linguistic or extra-linguistic. This
phenomenon, known as ambiguity, is universal across languages and cultures. When
provided with adequate contextual cues, individuals from diverse speech communities
can disambiguate these forms with remarkable ease, enabling successful communica-
tion.

As fundamental units of language, words exhibit ambiguity to varying degrees
and with different levels of discriminability. This ambiguity can be systematically
classified into multifunctionality (Haspelmath|2003), polysemy, and homonymy—an order
that reflects a progressive decrease in semantic relatedness. Representative examples of
these three categories are illustrated in Table [I} These distinctions are conventionally
reflected in dictionary organization: multifunctionality is often either omitted or briefly
indicated with a functional label (e.g., “contrasting conjunction”); polysemy is treated
within a single entry but listed under different numbered senses; whereas homonymy
is assigned separate entries that share the same word form

Language models mathematically formalize the mapping of linguistic tokens into
continuous vector representations. Through training on vast datasets across layers
containing billions of parameters, these models—particularly modern large language
models (LLMs) (OpenAl|[2023)-excel at text understanding and generation tasks, in-

1 This is exemplified in Chinese lexicographical practice, where a superscript numeral is used to
distinguish homonymous characters, such as “f£; (flower)” and “7£, (spend)”.
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Aspects Level Related Sense items Classical Unit Example

Homonymy Word X v content words bank, bat
Polysemy Sense 4 4 content words face, sharp
Multifunctionality =~ Usage v X func,, aff., partial adv.  and, again

Table 1: Taxonomy and characteristics of lexical ambiguity types. The characteristics
includes the level of meaning distinction, degree of semantic relatedness, treatment as
discrete sense items in lexicography, typical linguistic units involved, and representative
examples. Abbreviations: “func.,” “aff.,” and “adv.” denote function words, affixes,
and adverbs, respectively. Symbols ¢/ and X indicate relative strength of a feature
(more/less) rather than a binary presence/absence.

cluding dialogue generation (Heck et al.[2023), named entity recognition (Wang et al.
2025), and machine translation (Zhu et al.|[2024). A central research question thus arises:
how do these models represent and resolve lexical ambiguity? While numerous studies
have addressed specific tasks involving contextual lexical semantics, such as word sense
disambiguation (Navigli|2009), semantic similarity (Pilehvar and Camacho-Collados
2019), and co-reference resolution (Liu et al|2023), many are limited to traditional
architectures (Kenton and Toutanova2019) or reduce disambiguation to a classification
problem, thereby overlooking the inherent uncertainty and structural relationships
between meanings.

This doctoral research presents a systematic investigation into the representa-
tion of lexical ambiguity in language models, structured around three interconnected
strands. The first series of work advances beyond simplistic classification by employing
uncertainty estimation, demonstrating its necessity in capturing semantic vagueness,
contextual underspecification, and distributional shift. The second strand targets the
complex multifunctionality of function words—often more semantically intricate than
content words—where we develop a novel top-down method for constructing meaning-
function graphs, with plans for extension to language model analysis. The third work
probes the internal mechanisms of decoder-only LLMs, comparing them against varied
architectures to identify where and how contextual meanings are captured within
their hierarchical structures, thereby enhancing the interpretability of these notoriously
opaque systems.

This report provides a concise overview of the aforementioned research strands,
presenting key findings to summarize the core contributions of my doctoral research.
The discussion concludes by listing current limitations and outlining relevant promising
directions for future work. Due to space constraints, comprehensive related work and
extensive experimental details have been omitted; interested readers are referred to the
corresponding publications for complete technical expositions.

2. Representing Ambiguity as Uncertainty Estimation

Lexical ambiguity, where a single word possesses multiple meanings, underlies numer-
ous cross-linguistic phenomena (see Table [I). This ambiguity can persist even within
a specific context, manifesting as vagueness or enabling puns. Such cases often result
in graded sense interpretations, annotator disagreement (Schlechtweg et al.[2025), and
significant uncertainty when determining a word’s contextual meaning. Nevertheless,
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traditional lexical-semantic tasks—such as Word Sense Disambiguation (WSD)| and
Words-in-Context (WiC}—are typically formalized as deterministic classification prob-
lems. This formulation presupposes a single correct answer for each word, thereby
overlooking the inherent uncertainty and disagreement present in authentic language
use.

To address this limitation, our prior work (Liu and Liu[2023) reframes the sense se-
lection in Word Sense Disambiguation (WSD) as an uncertainty estimation (UE) problem:
instead of seeking a single correct sense, we ask how uncertain a model is when choosing
among potential meanings. We distinguish two primary sources of uncertainty:

®  Model Uncertainty arises from limitations in the model itself, particularly
when facing out-of-distribution (OOD) test data. This type of uncertainty
can typically be reduced by acquiring more training data or enhancing the
model’s knowledge.

¢  Data Uncertainty stems from the inherent noise and ambiguity present in
the data itself. This uncertainty is irreducible, persisting even with
unlimited or perfectly representative data.

To systematically evaluate uncertainty, we designed controlled scenarios simulating
varying degrees of data ambiguity by manipulating the contextual information around
target words—defined through either syntactic dependencies or linear order. Model
uncertainty was separately assessed using an out-of-distribution (OOD) dataset. We
applied multiple uncertainty estimation (UE) metrics to these scenarios using a state-
of-the-art model.

Our analysis employed the Sampled Maximum Probability (SMP) score, evaluated
against two performance metrics. As illustrated in Figure[l} data uncertainty decreases
incrementally as more context is provided, while model uncertainty remains consis-
tently lower than even the minimal data uncertainty. This indicates that SMP effectively
captures data uncertainty but tends to underestimate model uncertainty.

Further investigating the lexical properties influencing data uncertainty—including
syntactic category, morphology, sense granularity, and semantic relations—we found
that all examined properties, except for the number of synonyms, significantly impact
uncertainty levels.

A related variation of WSD is Words-in-Context (WiC) (Pilehvar and Camacho-
Collados|2019), which frames meaning comparison as a binary classification task. The
CoMeDi shared task (Schlechtweg et al|2025) extends this into a fine-grained four-
level classification, ranging from unrelated to identical meanings. Annotator ratings
are aggregated into an average score (accuracy) and standard deviation (disagreement),
with systems required to predict both values for unseen instances.

In our participation (Liu, Hu, and Liu|2025), we unified these subtasks by modeling
them as estimating the parameters (¢ and o) of a Gaussian distribution. The ¢ param-
eter directly captures the uncertainty in sense comparison, enabling application of our
UE techniques. This approach achieved competitive performance among all submitted
systems.

2 The task of identifying the correct sense of a word in context.
3 The task of determining if a target word shares the same meaning across two sentences.
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Figure 1: Analysis of uncertainty estimation in lexical disambiguation. (a) SMP and MP
scores with F1 accuracy under context control (“0”: target word only; “W”: full context).
(b) Uncertainty and accuracy comparing model uncertainty (OOD) and data uncertainty
(window-controlled, L=0), analyzed by classification correctness.

3. Evaluating Meaning Structure Using Semantic Map Models

Semantic Map Models (SMMs) represent meanings or functions as nodes in a network,
with edges indicating their associations. This approach is particularly valuable for
modeling the flexible usage patterns of function words across languages. SMMs adhere
to two core principles: the Connectivity Hypothesis (Haspelmath|2003), requiring that
meanings shared by a single word form constitute a connected subgraph; and the
Economy Principle, which minimizes redundant edges.

Traditional SMM construction follows a bottom-up approach, iteratively adjust-
ing connections to satisfy these principles—a process that is labor-intensive and dif-
ficult to scale. In contrast, our work (Liu et al|22025b) introduces a novel top-down
graph-based algorithm. We reformulate the principles into three global constraints:
(1) overall connectivity, (2) acyclicity, and (3) maximum co-occurrence weight. This
reformulation transforms the problem into finding a maximum spanning tree in a
fully connected graph, solvable with established algorithms like Prim’s
or Kruskal’s (Kruskal|[1956). We further propose a topological metric—the standard
deviation of node degrees—to select the optimal tree from candidate solutions.

We validate our approach through a case study on repetitive and supplement
adverbs (Guo|2010), covering 28 forms across 9 languages and 18 functions. The gen-
erated semantic map is evaluated both intrinsically—reporting graph statistics includ-
ing connectivity hypothesis satisfaction—and extrinsically against linguist-annotated
ground truth. As shown in Table [2} our algorithm demonstrates strong effectiveness
and efficiency.

To support practical application, we have developed an interactive visualization
tool (Liu et al|[2025a) to assist typologists in data analysis and presentation, with
positive feedback from user surveys.

As an ongoing extension, we are integrating language models to represent forms
across functions, aiming to enhance initial graph construction efficiency. Conversely,
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Model Sizet Recallt Precisiont Accuracy?

C 286 1.00 0.00 50.0
LT - - - 79.0
GT 91 1.00 0.20 1.00

0 90 85.7 0.17 92.6

1 89 82.1 0.21 91.4

2 89 82.1 0.44 90.1

3 88 82.1 0.34 91.4

4 88 78.6 0.50 88.9

Table 2: Performance comparison of generated semantic maps against baselines: com-
plete graph (C), ground truth (GT), and literature standard (LT). Index 0-4 denotes top
candidate maximum spanning trees (x10,000). Accuracy measures alignment with GT.

the typologist-curated meaning networks provide a challenging structured evaluation
framework for assessing language model capabilities.

Despite the impressive performance of large language models (LLMs), their internal
mechanisms for lexical semantic processing remain opaque. Unlike earlier specialized
models (Word2Vec, GloVe) or encoder-only architectures like BERT, decoder-only LLMs
employ a unified next-token prediction objective that intertwines understanding and
generation, complicating interpretation.

In our ACL 2024 work (Liu et al|2024), we analyze layer-wise representations of
decoder-only LLMs versus encoder-only BERT on the WiC task. As shown in Figure
decoder models exhibit an inverted U-shaped performance curve, peaking in early-to-
middle layers, while encoder models show monotonically improving performance to-
ward higher layers. This pattern suggests decoder LLMs establish word understanding
in lower layers and shift to prediction tasks in higher layers, aligning with their training
objective.

In ongoing work (Liu et al|2025c), we investigate the relational structure of token
embeddings in LLMs by constructing connectivity-constrained networks across the
vocabulary. Preliminary analysis reveals strong small-world effects—characterized by
short path lengths between tokens—with larger models exhibiting more pronounced
effects than smaller counterparts. This work aims to extend the analysis to additional
models to further validate these observations.

4. Conclusion and Limitations

This report has summarized my doctoral research on how language mod-
els—particularly decoder-only LLMs—represent, disambiguate, and learn lexically am-
biguous meanings. Through reformulations of classical tasks, typologically-inspired
network analysis, and representation probing, we demonstrate that language models
effectively capture lexical semantics, while highlighting the unique characteristics of
decoder-only architectures.

Several limitations warrant further investigation. First, despite some multilin-
gual evaluation, our focus remains predominantly on English, potentially overlooking
language-specific ambiguity patterns. For instance, Chinese exhibits distinct morpho-
logical structures from English, which directly influences its lexical semantic properties.
Second, our analysis operates primarily at the representation level, neglecting finer-
grained mechanistic interpretations at the neuronal level (Olah| 2022). Third, while
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Figure 2: Layer-wise representation analysis. Representation extraction methods:
base/repeat (target word), prompting (last punctuation), repeat_prev (previous word).

probing-based evaluation is widely adopted, its reliance on task-specific performance
raises questions about generalizability and predictive power. Future work will address
these constraints by expanding linguistic coverage, incorporating mechanistic analysis,
and exploring more integrated semantic frameworks such as functional distributional

semantics (Emerson and Copestake|2016).
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