

## Ambiguity Meets Uncertainty: Investigating Uncertainty Estimation for Word Sense Disambiguation

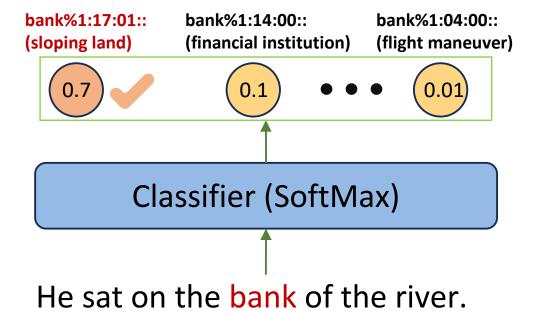
**Zhu Liu**, Ying Liu

liuzhu22@mails.tsinghua.edu.cn

yingliu@tsinghua.edu.cn

## Introduction Task and Problem

A deterministic classification task for Word sense disambiguation (WSD).



Findings: ACL 2023 **Ambiguity Meets Uncertainty** 

## Introduction Task and Problem

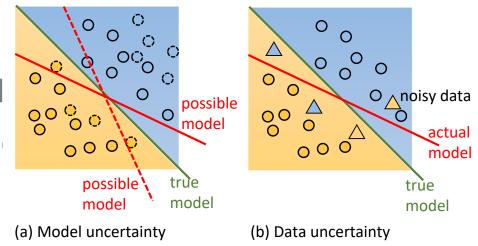
- A deterministic classification task for Word sense disambiguation (WSD).
- Probability score after SoftMax is poorly calibrated
- Fail to estimate uncertainty

3

### Introduction

### Task and Problem

- A deterministic classification task for Word
- Probability score after Softmax is not well-
- Fail to estimate uncertainty



- Model uncertainty: varied models due to inadequate data
- Data uncertainty: random results due to inherent noise

Introduction
Ambiguity meets Uncertainty

- WSD requires uncertainty estimation
- Model uncertainty **Imbalanced sense distribution** (Most-Frequent-sense bias) **Domain shift** (Different genres, language styles...)
- Data uncertainty Imperfect annotations with relatively low agreement (~80%) Literal vs. non-literal understandings

## Introduction Contributions

- To compare the conventional probability of the model output with the other three uncertainty scores
- To design test scenarios to evaluate model and data uncertainty
- To analyze which lexical properties affect uncertainty estimation.

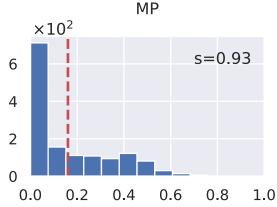
6

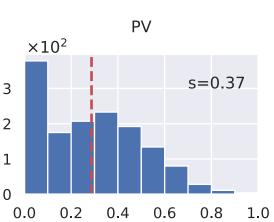
# Evaluation Uncertainty Scores

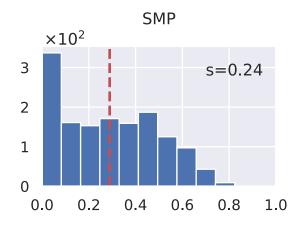
- Model: a SOTA WSD model (MLS [Conia and Navigli, 2021])
- Test Datasets: the Unified Evaluation Framework for English all-words(Senseval-2, Senseval-3, SemEval-2007, SemEval-2013, and SemEval-2015)
- UE scores: MP, SMP, PV and BALD
  - MP: negative Softmax output; Other scores: MC Dropout Sample statistics
- Metrics: RCC (risk courage curve) and RPP (reversed pair proportion)
  - RCC: cumulative misclassifications according to uncertainty levels
  - RPP: Disagreement samples between uncertainty and loss values

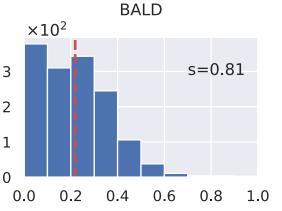
## Evaluation Uncertainty Scores

- Question: which UE score is better?
- The distribution of four UE scores on misclassified instances of all datasets.
- Sample-based score SMP better than
   MP with a more balanced distribution
- MP tends to be over-confident









# Evaluation Uncertainty Scores

| UE Score | Senseval-2 |       | Senseval-3 |       | SemEval-07 |       | SemEval-13 |       | SemEval-15 |       |
|----------|------------|-------|------------|-------|------------|-------|------------|-------|------------|-------|
|          | RCC ↓      | RPP↓  | RCC↓       | RPP↓  | RCC↓       | RPP↓  | RCC ↓      | RPP↓  | RCC↓       | RPP↓  |
| MP       | 5.69       | 9.50  | 7.11       | 10.37 | 8.68       | 11.40 | 5.78       | 8.02  | 5.02       | 11.07 |
| SMP      | 5.78       | 9.14  | 7.10       | 9.83  | 8.81       | 10.83 | 5.59       | 7.88  | 5.34       | 11.16 |
| PV       | 6.11       | 11.47 | 7.50       | 12.40 | 9.93       | 16.00 | 5.97       | 10.22 | 5.62       | 13.11 |
| BALD     | 6.00       | 11.09 | 7.46       | 11.99 | 9.36       | 14.73 | 5.83       | 10.02 | 5.48       | 12.77 |

Table 1: UE score comparisons on five standard WSD datasets.

| UE Score | NOUN  |      | VERB  |       | ADJ   |      | ADV  |      | ALL   |       |
|----------|-------|------|-------|-------|-------|------|------|------|-------|-------|
|          | RCC ↓ | RPP↓ | RCC ↓ | RPP↓  | RCC ↓ | RPP↓ | RCC↓ | RPP↓ | RCC ↓ | RPP↓  |
| MP       | 6.06  | 7.47 | 14.08 | 18.20 | 5.15  | 8.25 | 3.70 | 4.89 | 6.13  | 9.78  |
| SMP      | 4.94  | 7.66 | 13.76 | 17.45 | 4.39  | 8.35 | 2.65 | 4.85 | 6.11  | 9.44  |
| PV       | 6.25  | 9.17 | 15.38 | 22.02 | 4.97  | 9.37 | 3.20 | 5.33 | 6.48  | 11.91 |
| BALD     | 5.18  | 9.39 | 14.42 | 20.96 | 4.59  | 9.80 | 2.66 | 5.56 | 6.36  | 11.52 |

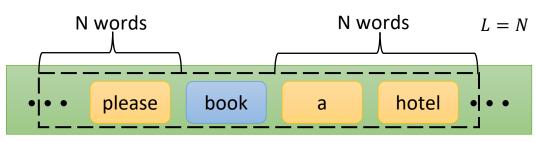
Table 2: UE score comparisons on all the datasets with different kinds of POS.

• SMP has an advantage over other scores.

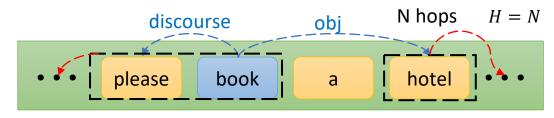
### Evaluation

#### Data Uncertainty

- Controllable context to simulate partial observations
- Window-controlled context
   N linear neighboring words
- Syntax-controlled context
   hierarchical neighboring words
   connected by universal dependency
   N hops



(a) window-controlled context

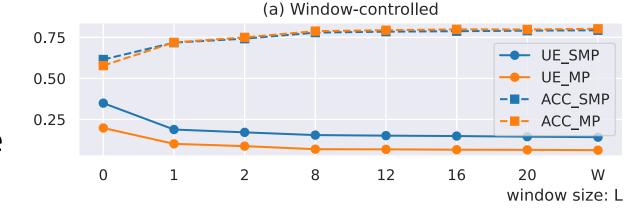


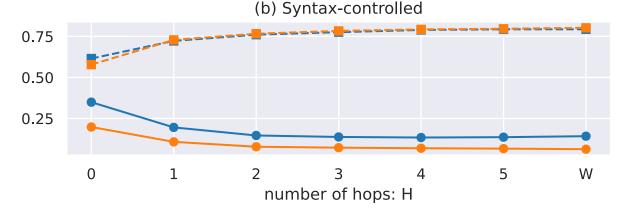
(b) syntax-controlled context

## Evaluation

#### Data Uncertainty

- How does the model capture DU?
- We expect that with the larger window size or number of hops, the more accurate and the more uncertain the model will be.
- SMP captures data uncertainty better





Findings: ACL 2023 Ambiguity Meets Uncertainty 11

### Evaluation Model Uncertainty

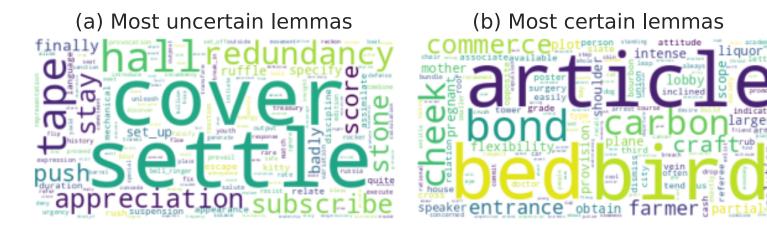
- How does the model capture MU?
- Out-of-distributed dataset: 42D [Maru et al., 2022]
- Lower uncertainty than the most (data) uncertain case
- SMP underestimates model uncertainty



Uncertainty and accuracy (F1) scores for model uncertainty (OOD) and data uncertainty (without any context) scenarios.

#### Qualitative Results

- Words with different levels of uncertainty
- Most uncertain words, e.g., settle, cover
   Most certain words, e.g., article, bed, bird
- Which lexical properties affect uncertainty estimation?



# Analysis Effects on Uncertainty

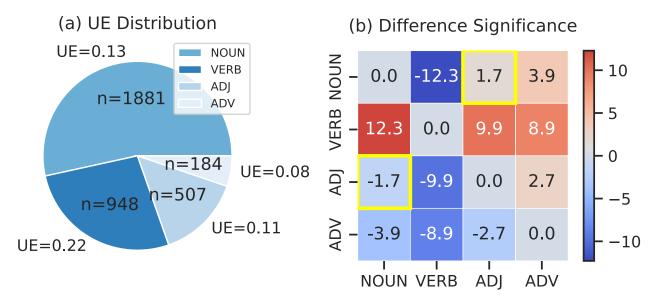
- Syntactic Category
- Morphology
- Sense Granularity
- Semantic relation

Question: Given different word groups split by the uncertainty level, is there significant difference in their mean values between each other?

- N splits for different effects, considering the trade-off of level granularity and sample sparsity
- T-test with p-value of 5%

# Analysis Effects on Uncertainty

- Syntactic Category
- Morphology
- Sense Granularity
- Semantic relation



Significant difference among different syntactic categories

Except for the NOUN-ADJ pair, verbal instances are more significantly uncertain than NOUN or ADJ, while ADV has the least uncertainty.

# Analysis Effects on Uncertainty

- Syntactic Category
- Morphology

   number of morphemes (nMorph)
- Sense Granularity

Number of ground-truth senses (nGT) Number of candidate senses (nPD)

<u>Semantic relation</u>
 Hyponymy for nouns (dHypo)
 Synonym (dSyno)

| Effect | Condition       | 100  | Uncertainty Estimation |      |      | Difference Significance                                                                                                                                                                                                   |           |                         |  |
|--------|-----------------|------|------------------------|------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------|--|
| Effect | Condition       | Agg. | L1                     | L2   | L3   | $\begin{array}{c ccccc} L1 \leftrightarrow L2 & L1 \leftrightarrow L3 \\ \hline & \textbf{1.44e-2} & \textbf{1.35e-8} \\ \hline & 7.61e-2 & \textbf{6.04e-4} \\ \hline & \textbf{3.6e-2} & 4.21e-1 \\ \hline \end{array}$ |           | $L2 \leftrightarrow L3$ |  |
|        | nGT=1, POS=NOUN | L    | 0.13                   | 0.11 | 0.07 | 1.44e-2                                                                                                                                                                                                                   | 1.35e-8   | 5e-4                    |  |
| nMorph | nGT=1, POS=VERB |      | 0.22                   | 0.19 | 0.13 | 7.61e-2                                                                                                                                                                                                                   | 6.04e-4   | 6.6e-2                  |  |
|        | nGT=1, POS=ADJ  |      | 0.11                   | 0.08 | 0.10 | 3.6e-2                                                                                                                                                                                                                    | 4.21e-1   | 4.40e-1                 |  |
|        | nGT=1, POS=ADV  |      | 0.11                   | 0.06 | 0.02 | 7.6e-2                                                                                                                                                                                                                    | 6.04e-4   | 6.60e-2                 |  |
| nGT    | -               | I    | 0.12                   | 0.22 | -    | 1.61e-22                                                                                                                                                                                                                  | -         | -                       |  |
| nPD    | nGT=1           | L    | 0.04                   | 0.16 | 0.22 | 6.22e-96                                                                                                                                                                                                                  | 3.42e-135 | 5.01e-10                |  |
| dHypo  | nGT=1, POS=NOUN | L    | 0.14                   | 0.12 | 0.09 | 1.43e-2                                                                                                                                                                                                                   | 1.91e-6   | 6e-3                    |  |
| dSyno  | nGT=1           | S    | 0.14                   | 0.14 | 0.14 | 5.55                                                                                                                                                                                                                      | 5.38      | 5.67                    |  |

Significant difference among different levels in terms of various effects

Findings: ACL 2023 Ambiguity Meets Uncertainty 16

### Conclusion

- To assess different uncertainty scores
- To examine to what extent a SOTA model captures data uncertainty and model uncertainty
- To explore effects that influence uncertainty estimation in the perspectives of morphology, inventory organization and semantic relations

Findings: ACL 2023 Ambiguity Meets Uncertainty

### Reference

- [Conia and Navigli, 2021] Simone Conia and Roberto Navigli. 2021. Framing word sense disambiguation as a multi-label problem for model-agnostic knowledge integration. In EACL: Main Volume, pages 3269–3275.
- [Maru et al., 2022] Marco Maru, Simone Conia, Michele Bevilacqua, and Roberto Navigli. 2022. Nibbling at the hard core of word sense disambiguation. ACL (Volume 1: Long Papers), pages 4724–4737
- Alessandro Raganato, Jose Camacho-Collados, andRoberto Navigli. 2017. Word sense disambiguation: A unified evaluation framework and empirical comparison. In ACL: Volume 1, Long Papers, pages 99–110.
- Maru, Marco, et al. "Nibbling at the hard core of Word Sense Disambiguation." Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2022.



#### Thank you for your attention!

For more information, please refer to:

https://github.com/RyanLiut/WSD-UE