





## Fantastic Semantics and Where to Find Them: Investigating Which Layers of Generative LLMs Reflect Lexical Semantics

**Zhu Liu**, Cunliang Kong, Ying Liu, Maosong Sun

Tsinghua University

### How Do LLMs Encode Lexical Semantics?

- GPT-like models
  - access only preceding context

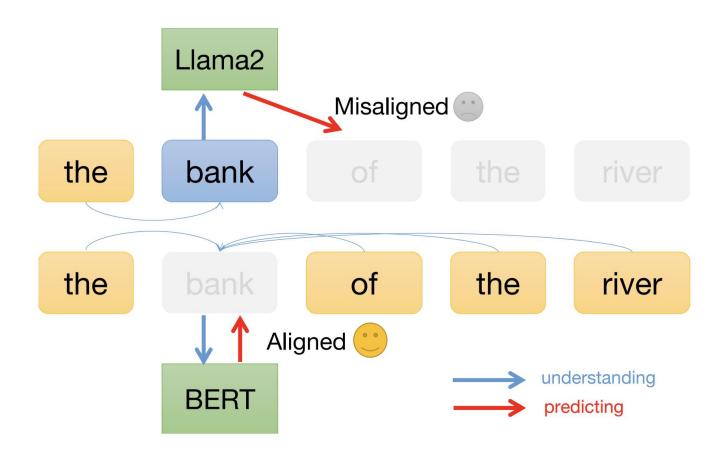
```
the bank along the river
the bank where you deposit
the two bank instances cannot be distinguished
```

utilize the objective of predicting the next token

different layers have varying understanding of contextual information and different abilities to predict the next word

**ACL 2024** 

#### How Do LLMs Encode Semantics?



Structural differences between BERT and LLAMA2

ACL 2024 3

#### How Do LLMs Encode Semantics?

#### Research Question

To what extent and through which layer do LLMs encode lexical semantics?

#### Hypothesis

GPT-like LLMs encode lexical semantics in shallow layers while making predictions, potentially leading to the forgetting of information related to current tokens in deep layers.

#### Method

Word in Context (WiC) Task

```
a binary classification task

True Air pollution — Open a window and let in some air
False the bank of the river — the bank where you deposit
```

- Method: 1) extract the layer-wise Llama2 representations with different settings.
  2) classify the pair according to cos-similarity score by a learnable threshold.
- the bank of the river to better utilize the context

  repeat the bank of the river the bank of the river

  repeat\_prev the bank of the river the bank of the river

  prompt The bank in this sentence: "the bank of the river" means in one word:

  ACL 2024

#### Observations

- Llama2 has the potential for word-level understanding
- prompting is the most effective method for Llama2
- repeat strategy is comparable to prompting and outperforms the base strategy
- verbs are generally more challenging to disambiguate
- anisotropy removal improves the performance

| Method                          | All  | Noun | Verb        |
|---------------------------------|------|------|-------------|
| Human                           | 80.0 | -    |             |
| Random                          | 50.0 | -    | -           |
| WSD                             | 67.7 | -    | -3          |
| BERT_large†(23)                 | 67.8 | 69.1 | 67.6        |
| BERT_large (22)                 | 71.0 | 70.7 | 71.5        |
| Context2vec                     | 59.3 | 7=   |             |
| Elmo                            | 57.7 | -    |             |
| Llama2_base†(6)                 | 60.9 | 63.7 | 58.3        |
| Llama2_base (11)                | 63.6 | 66.8 | 58.7        |
| Llama2_repeat†(9)               | 64.5 | 66.4 | 63.4        |
| Llama2_repeat (8)               | 68.1 | 72.7 | 65.6        |
| Llama2_prompt <sup>†</sup> (28) | 71.1 | 68.9 | 72.9        |
| Llama2_prompt (21)              | 72.7 | 74.5 | <u>72.1</u> |

Overall accuracy (%) on the WiC test set

#### **Observations**

- base & repeat
  - increase in shallow layers
  - decrease in deep layers
- BERT-Large
  - obtains the best performance in higher layers

 lower layers in Llama2 might encode lexical semantics



Layer-wise acc (%) for different settings

#### Observations

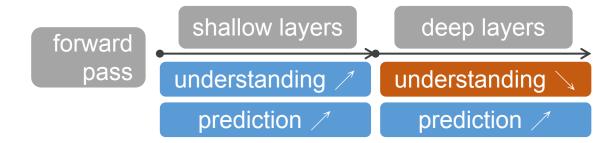
- repeat
  - increases in shallow layers
  - decreases in deep layers
- repeat\_prev & prompt
  - monotonically increase
- while the understanding may diminish as layers go deeper, the prediction ability improves



Layer-wise acc (%) for Llama2 settings

# Takeaways

- This study investigates how Llama2's forward-pass layer-wise representations encode lexical semantics using the WiC dataset.
- Llama2 might prioritizes understanding before prediction as information flows from shallow to deep layers.
- These findings may offer practical guidance on extracting lexical representations.



**ACL 2024** 

## Contact











ACL 2024 10