Fantastic Semantics and Where to Find Them: **Investigating Which Layers of Generative LLMs Reflect Lexical Semantics**

Zhu Liu, Cunliang Kong, Ying Liu, Maosong Sun liuzhu22@mails.tsinghua.edu.cn

- 1. Geometric probing without training a probing classifier
- 2. Layer-wise dynamics
- 3. Top-down interpretability

Research question

To what extent and through which layer do LLMs encode lexical semantics?

Increasing trend: prompt; repreat_prev; BERT_large

non-monotonic trend: base; repeat;

Method	All	Noun	Verb
Human	80.0	_	-
Random	50.0	-	-
WSD	67.7	_	-
BERT_large [†] (23)	67.8	69.1	67.6
BERT_large (22)	71.0	70.7	71.5
Context2vec	59.3	-	-
Elmo	57.7	-	-
Llama2_base [†] (6)	60.9	63.7	58.3
Llama2_base (11)	63.6	66.8	58.7
Llama2_repeat [†] (9)	64.5	66.4	63.4
Llama2 repeat (8)	68.1	72.7	65.6

Indicating Llama encodes lexical semantics before predicting (meaning of the next token)

- Llama2 (especially with prompting) has the potential for word-level understanding
- repeat strategy is comparable to prompting and outperforms the base strategy
- verbs are generally more challenging to disambiguate

Hypothesis

GPT-like LLMs encode lexical semantics in shallow layers while making predictions, potentially leading to the forgetting of information related to current tokens in deep layers.

Liama2_repear (0)	00.1	12.1	05.0	
Llama2_prompt [†] (28)	<u>71.1</u>	68.9	72.9	
Llama2_prompt (21)	72.7	74.5	<u>72.1</u>	

• anisotropy removal is better

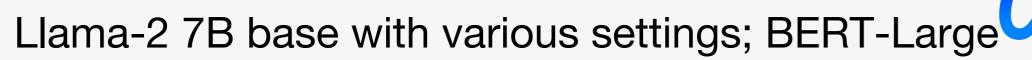
References

Method

Probing task: WiC (Word in Context) Whether words in two contexts have the same meaning?

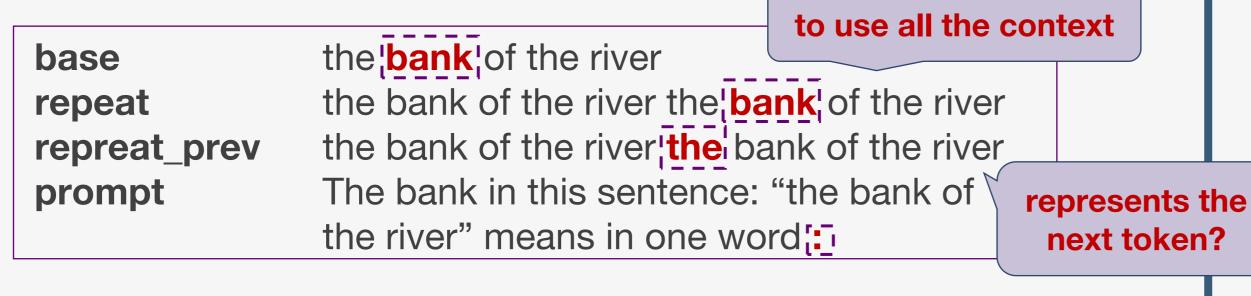
Air pollution - Open a window and let in some air $\sqrt{}$ The bank of the river - the bank where you deposit **x**

Model

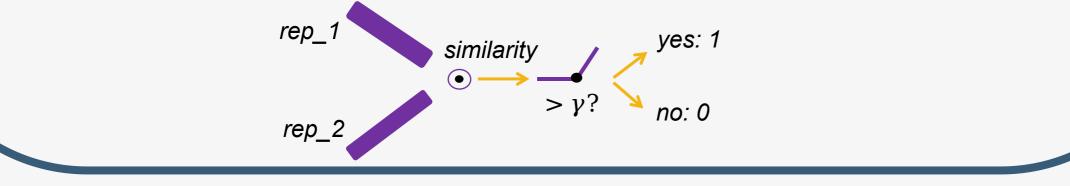


Settings - Where to extract representations?

- Wang et al., 2023a: Label words are anchors: An information flow perspective for understanding in-context learning. EMNLP
- Touvron et al., 2023: Llama 2: Open foundation and fine-tuned chat models. *arxiv*
- Zou et al., 2023: Representation engineering: A top-down approach to ai transparency. arxiv
- Jiang et al., 2023: Scaling sentence embeddings with large language models. arxiv
- Ethayarajh, 2019: How contextual are contextualized word representations? comparing the geometry of bert, elmo, and gpt-2 embeddings. EMNLP-IJCNLP



Method - How to make the binary classification?



Paper: https://arxiv.org/abs/2403.01509

Code: https://github.com/RyanLiut/LLM_LexSem

