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Introduction

How do generative LLMs encode lexical semantics? Layer-wise performance shows two trends: 7' and ﬂ\
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® Hypothesis

GPT-like LLMs encode lexical semantics in shallow layers
while making predictions, potentially leading to the forgetting
of information related to current tokens in deep layers.
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® Probing task: WiC (Word in Context)
Whether words in two contexts have the same meaning?

Air pollution - Open a window and let in some air
The bank of the river - the bank where you deposit x

® Settings - Where to extract representations?
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