

To know, or not to know? Language, Uncertainty and Artificial Intelligence

"知之为知之,不知为不知,是知也"

"To know what you know and to know what you do not know, that is true knowledge"

刘柱

Major: Computational Linguistics

Outline

- Background
- One paper published in Findings: ACL 2023

Large Language Models in Al

- Power Generative AI based on Large Language Models
- ChatGPT, new Bing (ChatGPT + Browser)

QY	帮我写一个介绍大语言模型背景的提纲,要求简单易懂	Ⅲ. 大语言模型的应用领域
		A. 自然语言生成
		B. 机器翻译和语言理解
S	当然!以下是一个简单易懂的大语言模型背景的提纲:	C. 文本摘要和信息提取
	I.引言	D. 对话系统和虚拟助手
	A. 什么是大语言模型?	E. 内容生成和创意助手
	B.大语言模型的背景和起源	
	C.大语言模型的重要性和应用领域	IV. 当前挑战和未来展望
		A. 面临的伦理和隐私问题
		B. 提高模型的准确性和理解能力
		C. 大语言模型与人类合作的潜力
		0. 八佔百候至任夕佔仲和西文化又加中的应用
		V/ 结论
	2. N-gram 模型和其应用	A. 总结大语言模型的背景和发展历程
	C.神经网络语言模型	B. 强调大语言模型的重要性和潜力
	1. 神经网络的兴起和应用	C 鼓励进一步探索和研究大语言模型的应用
	2. 循环神经网络和长短期记忆网络	
	D.大语言模型的出现	请记住 这口是—个提纲 你可以根据要要添加市
	1. 大数据集和计算资源的发展	用心上,
	2. GPT 模型的推出和影响	<u> </u>

0 6 \$ 当然! 以下是一个更精简的大语言模型背景的提纲: I.引言 A.什么是大语言模型? B. 大语言模型的背景和重要性 II. 发展历程 A. 早期自然语言处理技术 B. 统计语言模型 C.神经网络语言模型 D.大语言模型的出现 Ⅲ. 大语言模型的应用领域 Ⅳ. 当前挑战和未来展望 V. 结论 请注意,这是一个非常简洁的提纲,你可以根据需要添加更多的细节和内容,以便完善你的 介绍。

当然!以下是一个吸引别人关注的大语言模型背景的提纲:

I. 引言

A. 大语言模型:当计算机掌握语言的能力

B. 大语言模型的影响力和热度

II. 发展历程

A. 从简单到复杂:语言处理技术的演进B. 从统计到深度学习:语言模型的革新之路

C. 登峰造极:大语言模型的崛起

Ⅲ.大语言模型的惊人应用

A. 超凡的文本生成能力

B. 情感分析和舆情监测的利器

C. 强大的翻译和跨语言交流能力

D. 智能助手和虚拟人的崭新体验

IV. 当前挑战和未来展望

A. 伦理和隐私考量:大语言模型的双刃剑

B. 探索人机合作的可能性

C. 拓展到更多领域的追求

Large Language Models in Al

- Power Generative AI based on Large Language Models
- ChatGPT, new Bing (ChatGPT + Browser)
- ChatGPT + Knowledge Retrieval/Education/Ethics/Economics
- World-level news from academics to business

MIT Technology Review: https://www.technologyreview.com/2023/03/25/1070275/chatgptrevolutionize-economy-decide-what-looks-like/

Keynote and Paper

Critics

The False Promise of ChatGPT

📾 Jueves, 09/Mar/2023 🛔 Ian Roberts, Jeffrey Watumull, Noam Chomsky 🗋 The New York Times

The human mind is not, like ChatGPT and its ilk, a lumbering **statistical engine** for pattern matching, gorging on hundreds of terabytes of data and extrapolating the most likely conversational response or most probable answer to a scientific question. Mitigating the risk of extinction from AI should be a global priority alongside other societal-scale risks such as pandemics and nuclear war.

Signatories:

Al Scientists 🛛 🔽 Other Notable Figures

Geoffrey Hinton

Emeritus Professor of Computer Science, University of Toronto

Yoshua Bengio Professor of Computer Science, U. Montreal / Mila

Demis Hassabis CEO, Google DeepMind

Sam Altman

CEO, OpenAl

AI for safety: https://www.safe.ai/statement-on-ai-risk

7

Does AI really know languages?

- Mega Data + Deep learning -> result
- "To know or not to know?" before we ask "To be or not to be?"
- Known knowns vs. Known unknowns
- What does the model know?
- Does the model know what it/he/she does not know?

Epistemic Problems in Al

Known knowns

- Black-box, a lack of accountability and trust
 - Less mathematical theory
 - correlation rather than causation

Known unknowns

- Over-confident/hallucination
 - Needs more statistical theory
 - Bayesian Probabilistic modeling

Input	Black Box	Outout
		GoodFirms

What weighs more, two pounds of feathers or a pound of bricks?	Ľ		
wo pounds of feathers weigh more than a pound of bricks.	Û	₽	7
Explain			
apologize for the mistake in my previous response. It was incorrect. In reality, two pounds of eathers and a pound of bricks both weigh the same, which is two pounds.	Û	₽	Ţ

Ambiguity Meets Uncertainty: Investigating Uncertainty Estimation for Word Sense Disambiguation

Zhu Liu, Ying Liu

liuzhu22@mails.tsinghua.edu.cn

yingliu@tsinghua.edu.cn

Outline

- Introduction
- Evaluation (Experiment)
- Results
- Analysis
- Conclusion

Introduction Task and Problem

• A deterministic classification task for Word sense disambiguation (WSD).

Introduction Task and Problem

- A deterministic classification task for Word sense disambiguation (WSD).
- Probability score after SoftMax is poorly calibrated/ over-confident
- Fail to estimate uncertainty

Introduction

Task and Problem

- A deterministic classification task for Word
- Probability score after Softmax is not well-
- Fail to estimate uncertainty

- Model uncertainty: varied models due to inadequate data
- Data uncertainty: random results due to inherent noise

Introduction Ambiguity meets Uncertainty

- WSD requires uncertainty estimation
- Model uncertainty

Imbalanced sense distribution (Most-Frequent-sense bias) **Domain shift** (Different genres, language styles...)

Data uncertainty

Imperfect annotations with relatively low agreement (~80%) Literal vs. non-literal understandings

Introduction Contributions

- To compare the conventional probability of the model output with the other three uncertainty scores
- To design test scenarios to evaluate model and data uncertainty
- To analyze which lexical properties affect uncertainty estimation.

Evaluation: Known unknowns Uncertainty Scores

- Model: a SOTA WSD model (MLS [Conia and Navigli, 2021])
- <u>Test Datasets</u>: the Unified Evaluation Framework for English all-words(Senseval-2, Senseval-3, SemEval-2007, SemEval-2013, and SemEval-2015)
- <u>UE scores</u>: MP, SMP, PV and BALD

MP: negative Softmax output; Other scores: MC Dropout Sample statistics

 <u>Metrics</u>: RCC (risk courage curve) and RPP (reversed pair proportion) RCC: cumulative misclassifications according to uncertainty levels RPP: Disagreement samples between uncertainty and loss values

Evaluation Uncertainty Scores

- Question: which UE score is better?
- The distribution of four UE scores on misclassified instances of all datasets.
- Sample-based score SMP better than MP with a more balanced distribution
- MP tends to be over-confident

Evaluation Uncertainty Scores

	Senseval-2		Senseval-3		SemEval-07		SemEval-13		SemEval-15	
UE Score	$RCC\downarrow$	$RPP\downarrow$	$RCC\downarrow$	RPP↓	$RCC\downarrow$	$RPP \downarrow$	$\operatorname{RCC} \downarrow$	$RPP\downarrow$	$\operatorname{RCC}\downarrow$	$RPP\downarrow$
MP	5.69	9.50	7.11	10.37	8.68	11.40	5.78	8.02	5.02	11.07
SMP	5.78	9.14	7.10	9.83	8.81	10.83	5.59	7.88	5.34	11.16
PV	6.11	11.47	7.50	12.40	9.93	16.00	5.97	10.22	5.62	13.11
BALD	6.00	11.09	7.46	11.99	9.36	14.73	5.83	10.02	5.48	12.77

Table 1: UE score comparisons on five standard WSD datasets.

	NOUN		VERB		ADJ		ADV		ALL	
UE Score	$RCC\downarrow$	$RPP\downarrow$	$RCC\downarrow$	$RPP\downarrow$	$RCC\downarrow$	$RPP \downarrow$	$\text{RCC}\downarrow$	$RPP\downarrow$	$RCC\downarrow$	$RPP\downarrow$
MP	6.06	7.47	14.08	18.20	5.15	8.25	3.70	4.89	6.13	9.78
SMP	4.94	7.66	13.76	17.45	4.39	8.35	2.65	4.85	6.11	9.44
PV	6.25	9.17	15.38	22.02	4.97	9.37	3.20	5.33	6.48	11.91
BALD	5.18	9.39	14.42	20.96	4.59	9.80	2.66	5.56	6.36	11.52

Table 2: UE score comparisons on all the datasets with different kinds of POS.

• SMP has an advantage over other scores.

Evaluation: Two unknowns Data Uncertainty

- Controllable context to simulate partial observations
- <u>Window-controlled context</u> N linear neighboring words
- Syntax-controlled context

hierarchical neighboring words connected by universal dependency N hops

Evaluation Data Uncertainty

- How does the model capture DU?
- We expect that with the larger window size or number of hops, the more accurate and the more uncertain the model will be.
- SMP captures data uncertainty better

Evaluation Model Uncertainty

- How does the model capture MU?
- Out-of-distributed dataset: 42D [Maru et al., 2022]
- Lower uncertainty than the most (data) uncertain case
- SMP underestimates model uncertainty

Uncertainty and accuracy (F1) scores for model uncertainty (OOD) and data uncertainty (without any context) scenarios.

Qualitative Results

- Words with different levels of uncertainty
- Most uncertain words, e.g., *settle, cover* Most certain words, e.g., *article, bed, bird*
- Which lexical properties affect uncertainty estimation?

Analysis: Known knowns Effects on Uncertainty

Linguistic knowledge

- Syntactic Category
- Morphology
- Sense Granularity
- Semantic relation

Question: Given different word groups split by the uncertainty level, is there significant difference in their mean values between each other?

- N splits for different effects, considering the trade-off of level granularity and sample sparsity
- T-test with p-value of 5%

Analysis Effects on Uncertainty

- Syntactic Category
- Morphology
- Sense Granularity
- Semantic relation

Significant difference among different syntactic categories

Except for the NOUN-ADJ pair, verbal instances are more significantly uncertain than NOUN or ADJ, while ADV has the least uncertainty.

Analysis Effects on Uncertainty

- Syntactic Category
- <u>Morphology</u>
 number of morphemes (nMorph)
- Sense Granularity
- Number of ground-truth senses (nGT) Number of candidate senses (nPD)
- <u>Semantic relation</u>
 Hyponymy for nouns (dHypo)
 Synonym (dSyno)

Effect	Condition	Agg	Uncertainty Estimation			Difference Significance			
Effect	Condition	Agg.	L1	L2	L3	$L1 \leftrightarrow L2$	$L1 \leftrightarrow L3$	$L2 \leftrightarrow L3$	
	nGT=1, POS=NOUN		0.13	0.11	0.07	1.44e-2	1.35e-8	5e-4	
nMamh	nGT=1, POS=VERB	T	0.22	0.19	0.13	7.61e-2	6.04e-4	6.6e-2	
niviorpn	nGT=1, POS=ADJ	L	0.11	0.08	0.10	3.6e-2	4.21e-1	4.40e-1	
	nGT=1, POS=ADV		0.11	0.06	0.02	7.6e-2	6.04e-4	6.60e-2	
nGT	-	Ι	0.12	0.22	-	1.61e-22	-	-	
nPD	nGT=1	L	0.04	0.16	0.22	6.22e-96	3.42e-135	5.01e-10	
dHypo	nGT=1, POS=NOUN	L	0.14	0.12	0.09	1.43e-2	1.91e-6	6e-3	
dSyno	nGT=1	S	0.14	0.14	0.14	5.55	5.38	5.67	

Significant difference among different levels in terms of various effects

Known Unknowns

- To assess different uncertainty scores
- To examine to what extent a SOTA model captures data uncertainty and model uncertainty

Known Knowns

• To explore effects that influence uncertainty estimation in the perspectives of morphology, inventory organization and semantic relations

Reference

- [Conia and Navigli, 2021] Simone Conia and Roberto Navigli. 2021. Framing word sense disambiguation as a multi-label problem for model-agnostic knowledge integration. In EACL: Main Volume, pages 3269–3275.
- [Maru et al., 2022] Marco Maru, Simone Conia, Michele Bevilacqua, and Roberto Navigli. 2022. Nibbling at the hard core of word sense disambiguation.ACL (Volume 1: Long Papers), pages 4724–4737
- Alessandro Raganato, Jose Camacho-Collados, andRoberto Navigli. 2017. Word sense disambiguation: A unified evaluation framework and empirical comparison. In ACL: Volume 1, Long Papers, pages 99–110.
- Maru, Marco, et al. "Nibbling at the hard core of Word Sense Disambiguation." Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2022.
- Knowledge of Knowledge: Exploring Known-Unknowns Uncertainty with Large Language Models

Thank you for your attention!

For more information, please refer to: https://github.com/RyanLiut/WSD-UE